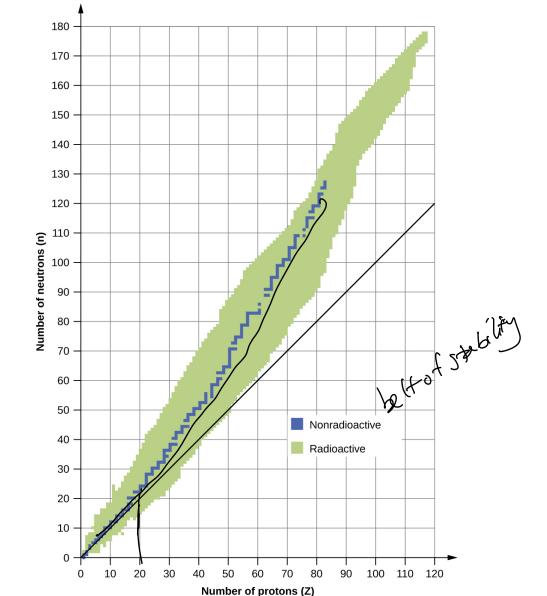


Isotopes


- Same number of protons but different number of neutrons
- Protons + neutrons are called nucleons

Radionuclides

 A nucleus is considered stable if it cannot transform without the addition of outside energy

 A radionuclide in contrast spontaneously decay into other nuclei until they reach a stable isotope

Belt of Stability

Types of Radioactive Decay

Name	Symbol(s)	Representation	Description
Alpha particle	4_2 He or $^4_2\alpha$	**	(High-energy) helium nuclei consisting of two protons and two neutrons
Beta particle	$_{-1}^{0}e$ or $_{-1}^{0}\beta$	•	(High-energy) electrons
Positron	$_{+1}^{0}$ e or $_{+1}^{0}\beta$	•	Particles with the same mass as an electron but with 1 unit of positive charge
Proton	¹ ₁ H or ¹ ₁ p	•	Nuclei of hydrogen atoms
Neutron	¹ 0 n		Particles with a mass approximately equal to that of a proton but with no charge
Gamma ray	γ	~~~~>γ	Very high-energy electromagnetic radiation

https://openstax.org/books/chemistry-2e/pages/21-1-nuclear-structure-and-stability

Writing Nuclear Equations $\widehat{Al-27}$ undergoes alpha decay $\frac{4}{2}$ • O-15 undergoes positron emission K-40 undergoes electron capture

Radioactive Decay

Radioisotopes follow first order kinetics!

radio nodide

Example 1: Kinetics of Radioactive Decay

The half-life of cobalt-60 is 5.3 yr. How much of a 1.000-mg sample of cobalt-60 is left after 15.9 yr?

693 672 - 0.693 K

Example 2: Kinetics of Radioactive Decay

A wooden object from an archeological site is subjected to radiocarbon dating. The activity of the sample that is due to ¹⁴C is measured to be 11.6 disintegrations per second. The activity of a carbon sample of equal mass from fresh wood is 15.2 disintegrations per second. The half-life of ¹⁴C is 5715 yr. What is the age of the archeological sample?

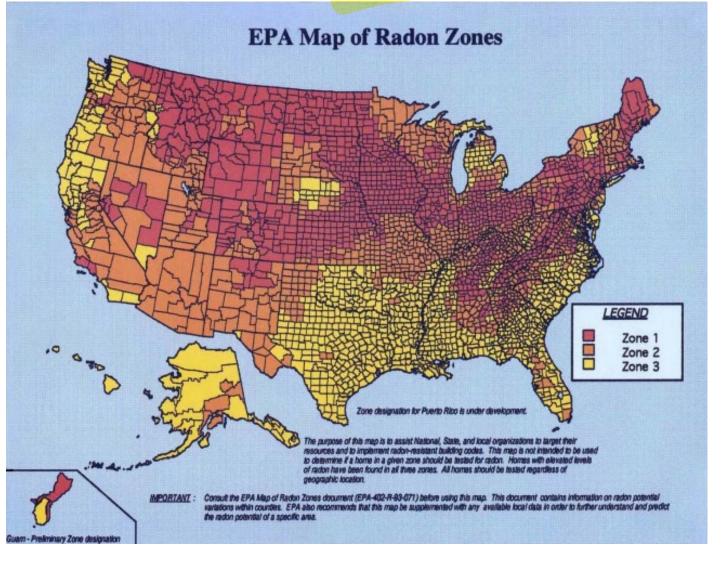
$$ty2 = 0.693
K = 0.693
K = 1.21 \times 10^{-4} \text{ yr}$$

$$tx = -Kt + 2 N N o$$

$$2 N N t = -Kt + 2 N N o$$

$$2 N N t - 2 N N o = -Kt$$

1.6 1.2xbyr6 15.02 = -1.2xbyr6


Potassium ion is present in foods and is an essential nutrient in the human body. One of the naturally occurring isotopes of potassium, potassium-40, is radioactive. Potassium-40 has a natural abundance of 0.0117% and a half-life $t_{1/2} = 1.28 \times 10^9 \text{ yr.}$ It undergoes radioactive decay in three ways: 98.2% is by electron capture, 1.35% is by beta emission, and 0.49% is by positron emission. (a) Why should we expect 40K to be radioactive? (b) Write the nuclear equations for the three modes by which ⁴⁰K decays. **(c)** How many ⁴⁰K⁺ ions are present in 1.00 g of KCI? (d) How long does it take for 1.00% of the 40K in a sample to undergo radioactive decay?

a) 40K 19p + 2(n > (: (anon indection to 40 K -> -, e + 20 40 K -> 0 C + 40 Ar

C/Z Ktions present in 1,009 KCI 1.00 gKC1 x Imol kid x Insolt x 6,027 Insolt of TygKC1 Insolt of I 8.1×10²1 × 1005 40/t is 0.0117-1- (8.1×10²¹)(0,000117) 9.5×1017-40

d) How long does it take for /. Dah of k-90 to decay? $2n\left(\frac{Nt}{No}\right) = -Kt$ First End K K= 0.693 1.28×10° y' K= 5.4×16 yr £42=0.693 $\frac{1}{-5.4 \times 10^{-10} \text{ G}} = \frac{5.4 \times 10^{-10} \text{ G}}{-5.4 \times 10^{-10} \text{ G}}$

L= 1.8 x 10 T Jews

https://www.epa.gov/radon/epa-map-radon-zones-0