
1/21/26

1

1

CS340 Analysis of Algorithms

Introduction
Dianna Xu

Prerequisites
• Basic programming
– pointers, structures/classes, recursion

• Discrete Math
– induction, recurrence relations, counting,
probability and graph theory

• Understanding of basic data structures
– lists, stacks, queues, trees, graphs and heaps

• Knowledge of basic sorting algorithms
• Ability to do a time analysis (loops and DS
operations)

2

3

• Course website
– www.cs.brynmawr.edu/cs340

• Moodle
• CS data server

– account: ddiaz1@brynmawr.edu
– goldengate.cs.brynmawr.edu

• Slack
– If I am near a computer: near-instant responses
– otherwise: slower responses, but still faster than

email

Learning Resources Policies

• Be on time and come to all classes and
labs

• Actively participate in the discussions
• Expect 24-hour response time for emails.
Longer on weekends

• No late work, no late projects
• Extensions should be requested at least
24-hours ahead of deadline

5

6

• Syllabus
• Lab: Wednesdays
– 2:40pm-4:00pm

• Textbook is required (and useful!)
• Learn LaTeX

Logistics Study Groups and Discussions

• Discussions are vital
• Study groups

– formation is required

7

http://www.cs.brynmawr.edu/cs340
mailto:ddiaz1@brynmawr.edu


1/21/26

2

Collaboration policy
• Allowed sources:

– your classmates in this class – work together, then
write it up separately

– the textbook
– me
– the TAs
– your notes or textbooks from previous classes

• Disallowed sources for solution lookup:
– the internet/AI tools
– students in this class from previous years
– anything else

• Cite anything that contributed to your solutions8

What is an Algorithm?

• Any well-defined computational procedure
that takes some values as input and
produces some values as output.

• A step-by-step instruction for solving a
computational problem

• Enough details so that a competent
computer scientist can implement without
questions

9

Why Algorithms?

• Programming is a remarkably complex task
– structural complexity
– large data sets and complex data structures
– complex problems that requires efficient

algorithms
• There are standard ways of approaching

algorithm design (patterns)
• High-level tools for run-time analysis

10

Nothing New Under the Sun

• If we can identify broad categories of
algorithms and solve them, then when we
see those problems again, they’re easy to
solve.

• If we encounter a new problem, it’s
probably similar to a solved one, or a few
solved problems put together.

11

Algorithm Design

• Algorithms are mathematical objects
– Correctness
– Efficiency

• worst-case complexity
• average-case complexity

• Algorithms
– provide solutions
– provide a language to express problems

13

Stable Matching Problem

16



1/21/26

3

Example
Employers Applicants

Google(G) Intel(I) Apple(A) Kate(K) Clara(C) Lisa(L)
K K L A A G
C L K G I I
L C C I G A

17

• Assignments
– G-C, I-L, A-K
– G-L, I-K, A-C
– G-L, I-C, A-K

Example
Employers Applicants

Google(G) Intel(I) Apple(A) Kate(K) Clara(C) Lisa(L)
K K L A A G
C L K G I I
L C C I G A

18

• Assignments
– G-C, I-L, A-K G[K]-C[A,I], I[K]-L[G], A[L]-K[]
– G-L, I-K, A-C G[K,C]-L[], I[]-K[A,G], A[L,K]-C[]
– G-L, I-C, A-K G[K,C]-L[], I[K,L]-C[A], A[L]-K[]

Steps to finding an algorithm
1. Construct a good example (not too small).
2. Solve the example and check your solution (by

hand, without worrying about the algorithm)
3. Think about how you solved and/or checked the

problem and how you can use that to solve a
general instance.

4. Formalize an algorithm (might have to formalize
the problem too)

5. Construct a new and somehow different example
and run your algorithm on it and check the
solution.

6. Repeat until you are confident it works.

Definitions

• Good definitions are vital
– the problems usually come with definitions.
Use them, do not make up new ones
unnecessarily

– learn to write definitions like the ones you
were given

• Outline/formulate your inputs and outputs
with the definitions

20

Matching

• Given a pair of sets ! and ", a matching,
is a collection of pairs ($, &), where $ ∈ !
and & ∈ ", and each element of ! and "
appears in at most one pair.

• A matching is perfect if every element of !
and " occurs in some pair.

21

Stable Matching

• Given sets ! and " of equal size and a
preference ordering for each element of
each set, a perfect matching is stable if
there is no pair ($, &) that is not in the
matching where $ prefers & to its current
match and & prefers $ to its current match.

• An unstable matching involves at least two
pairs

22



1/21/26

4

Input/Output

• Input
– A set of employers: !
– A set of applicants: "
– ! = " = %
– 2% preference lists, each of size %
– How are the preference lists stored?
• linked lists? arrays? hash maps? why?

– ', a list/set of % pairs (the matching)
• Output: yes/no

23

Challenge

• Write up the algorithm we just discussed
that decides if a matching is stable

• Even if you have a pretty good idea on
how it’s supposed to work, writing it up
cleanly and succinctly is still not an easy
task!

24


