1/21/26

CS340 Analysis of Algorithms

Introduction
Dianna Xu

Prerequisites

» Basic programming
— pointers, structures/classes, recursion
* Discrete Math

—induction, recurrence relations, counting,
probability and graph theory

» Understanding of basic data structures
— lists, stacks, queues, trees, graphs and heaps
» Knowledge of basic sorting algorithms

Ability to do a time analysis (loops and DSZ
operations)

Learning Resources

Course website
— www.cs.brynmawr.edu/cs340
Moodle

CS data server
— account: ddiaz1@brynmawr.edu

— goldengate.cs.brynmawr.edu

Slack
— If am near a computer: near-instant responses

— otherwise: slower responses, but still faster than
email 3

Policies

* Be on time and come to all classes and
labs

* Actively participate in the discussions

* Expect 24-hour response time for emails.
Longer on weekends

* No late work, no late projects

» Extensions should be requested at least
24-hours ahead of deadline

Logistics

Syllabus

Lab: Wednesdays
—2:40pm-4:00pm

Textbook is required (and useful!)
Learn LaTeX

Study Groups and Discussions

¢ Discussions are vital

» Study groups
— formation is required

http://www.cs.brynmawr.edu/cs340
mailto:ddiaz1@brynmawr.edu

Collaboration policy

* Allowed sources:

— your classmates in this class — work together, then
write it up separately

— the textbook
- me
—the TAs
— your notes or textbooks from previous classes
» Disallowed sources for solution lookup:
— the internet/Al tools
— students in this class from previous years
— anything else
 Cite anything that contributed to your solutions

1/21/26

What is an Algorithm?

* Any well-defined computational procedure
that takes some values as input and
produces some values as output.

* A step-by-step instruction for solving a
computational problem

* Enough details so that a competent
computer scientist can implement without
questions

Why Algorithms?

* Programming is a remarkably complex task
— structural complexity
— large data sets and complex data structures

—complex problems that requires efficient
algorithms

* There are standard ways of approaching
algorithm design (patterns)

 High-level tools for run-time analysis

Nothing New Under the Sun

« If we can identify broad categories of
algorithms and solve them, then when we
see those problems again, they’re easy to
solve.

« If we encounter a new problem, it's
probably similar to a solved one, or a few
solved problems put together.

Algorithm Design

+ Algorithms are mathematical objects
— Correctness
— Efficiency
 worst-case complexity
* average-case complexity

* Algorithms
— provide solutions
— provide a language to express problems

Stable Matching Problem

» Match employers/schools to applicants so
that no one wants to switch
— What's the input?
—What's the goal?

* What's a switch?

—employer e has been matched with applicant
a, but prefers applicant a’ AND

— applicant a’ has been matched with employer
e', but prefers employer e

Example

Google(G) Intel(l) Apple(A) Kate(K) Clara(C) Lisa(L)

K K L A A G

C L K G | |

L C C | G A
* Assignments

-G-C, I-L, A-K

-G-L, I-KK, A-C

-G-L, I-C, A-K

1/21/26

Example
Google(G) Intel(l) Apple(A) Kate(K) Clara(C) Lisa(L)
K K L A A G
(0] L K G | |
L C C | G A

* Assignments
—G-C, I-L, AK G[K]-CIA,I], I[K]-L[G], AIL]-K[]
- G-L, kKK, A-C GIK,CI-L[], II-KI[A,G], A[L,K]-C[]
—G-L, I-C, A-K GIK,C]-L[], I[K,L]-C[A], A[L]-KI]

18

Steps to finding an algorithm

1. Construct a good example (not too small).

2. Solve the example and check your solution (by
hand, without worrying about the algorithm)

3. Think about how you solved and/or checked the
problem and how you can use that to solve a
general instance.

4. Formalize an algorithm (might have to formalize
the problem too)

5. Construct a new and somehow different example
and run your algorithm on it and check the
solution.

6. Repeat until you are confident it works.

Definitions

« Good definitions are vital

—the problems usually come with definitions.
Use them, do not make up new ones
unnecessarily

—learn to write definitions like the ones you
were given

 Outline/formulate your inputs and outputs
with the definitions

20

Matching

+ Given a pair of sets X and Y, a matching,
is a collection of pairs (x,y), where x € X
and y €Y, and each element of X and Y
appears in at most one pair.

* A matching is perfect if every element of X
and Y occurs in some pair.

Stable Matching

* Given sets X and Y of equal size and a
preference ordering for each element of
each set, a perfect matching is stable if
there is no pair (x,y) that is not in the
matching where x prefers y to its current
match and y prefers x to its current match.

* An unstable matching involves at least two
pairs

22

Input/Output

* Input
— A set of employers: E
— A set of applicants: A
-lEl=|Al=n
- 2n preference lists, each of size n

— How are the preference lists stored?
* linked lists? arrays? hash maps? why?

- M, a list/set of n pairs (the matching)
+ Output: yes/no

1/21/26

Challenge

* Write up the algorithm we just discussed
that decides if a matching is stable

» Even if you have a pretty good idea on
how it's supposed to work, writing it up
cleanly and succinctly is still not an easy
task!

24

