Notes

+ Office hours: Tuesdays 2pm-4pm

e TA hours:
— Cecilia Chen, Saturdays 6pm-8pm, Park231

+ First assignment out (due next Monday)
+ Electronic submission on Moodle

« LaTeX tutorial and templates on course
website

« Sample write-up on Moodle

CS 340 - Analysis of Algorithms
Stable Matching Analysis

Dianna Xu

Stable Matching

* Input
— A set of employers: E
— A set of applicants: A
-|El =14l =n
- 2n preference lists, each of size n
— How are the preference lists stored?
* linked lists? arrays? hash maps? why?

» Output: M, a list/set of n pairs

Gale-Shapley Algorithm

allein E and a in A are unpaired
while there is an e unmatched that hasn't made an
offer to every a:
choose such an e
let a be the highest-ranked applicant in the preference
list of e, to whom e has not made an offer
if a is unpaired then pair a and e
else a is currently paired with some ¢’
if a prefers e’ to e then e remains unpaired
else a is paired with e and e’ becomes unpaired
return the set of pairs

1/28/26

Example

Google(G) Intel(l) Apple(A) Kate(K) Clara(C) Lisa(L)
K K L A A G
C L K G | |
L (o] (o] | G A

G—K [G-K]

I—-K rejected

I-L [G-K, I-L]

A—L rejected

A—K [A-K, I-L]

G—C [A-K, I-L, G-C]

Analysis

* What can we say about the progression of
matches from the employers point of
view?

» The applicants point of view?

* How many iterations might the algorithm
execute?

* Is the matching always stable?

Observations

« Employers: applicants only get worse

+ Applicants: jobs only get better and never
lose a job once they have one

Proof of termination

Proof:

* An employer only proposes to a new
applicant and never again

* There are at most n? such pairings

n? iterations of the while loop

Proof of correctness

* Will all employers and applicants be
matched? - Is the matching perfect?

Proof (by contradiction):

- E.uppose there is some employer e who didn’t
ire.

—Then there is some applicant a who doesn’t
getajob.

— So e didn'’t offer a a job. But e was required to
offer everyone a job.
Contradiction

Proof of correctness: Stability

* Is the matching always stable? ‘o—>5

N
N
o o
e a

Proof of stability (by contradiction):

—Suppose e —a is an unstable pair. (What
does this mean?)

-e—a and e’ —a’ are both unstable because e
and a’ want to switch

— How could this have happened?
« Case 1: e never offered a’ a job
« Case 2: e did offer a’ a job

Analysis

*+ So what is the running time of this
algorithm?
— while loop runs n? iterations

—make data structure decisions and analyze
based on data structure operation costs

— consult the writeup sample provided

Gale-Shapley Again

all e in E and a in A are unpaired
while there is an e unmatched that hasn't made an
offer to every a:
choose such an e
let a be the highest-ranked applicant in the preference
list of e, to whom e has not made an offer
if a is unpaired then pair a and e
else a is currently paired with some ¢’
if a prefers e’ to e then e remains unpaired
else a is paired with e and e’ becomes unpaired
return the set of pairs

1/28/26

Data Structures

+ Employers are assigned n unique int IDs
[- .

» Applicants are assigned n unique int IDs
ag, ..., 0y

* Preference lists are 2D int arrays that are
indexed by the IDs, storing rank as
integers

Data Structures

Applicant plists: Employer plists: n sorted

o ayie3 en_i, .., ey AI1AYS of size n

« 2D array of size nxn: M: integer array of size n,
— Plalled] =n indexed by the applicants
- Plag]le;] =n—1 and stores matched

- Plag]les] =1 employer IDs
- Queue of size n for offer
- Plag]len—] =2 making

- Pla]len] =3
* if ay prefers e; to ¢;

- if (Play] [es]<Play] [e4])

Analysis

+ Is this algorithm better for the employers
or the applicants?

* What does “better” mean?
— evaluated collectively

» Answer by lab

—examples of different stable matchings for the
same input, together with exact preference
lists

— precise definition of “better”

CS 340 - Analysis of Algorithms
Complexity

Dianna Xu

Big O

Any=0,c>0,if f(n) <c-gm)vn = n,,
then f(n) = 0(g(n)

+ Constant factors are ignored
» Upper bound

cg(m)

e lim [<c
n-oo g(n)

ny

How do these functions grow?

* filx) =
43x%log* x + 12x3logx + 52xlogx =
0(x3logx)
e fo(x) = 15x% + 7xlog3x = 0(x?)
e f3(x) =3x + 4logs x + 91x2 = 0(x?)
o fo(x) = 133279 + 4x% = 0(9%)

o fs(0) = ZEo5r=0(1)

Useful Facts

» polynomials grow faster than polylogs
- 1im L9 = 0,4,5 > 0
n—-oo n

+ exponentials grow faster than polynomials

—limZ—:=0,a>0,b>1

n—oo
* log bases do not matter
- logam _ c +#0,a,b>1
n—oo logp n

» exponential bases do matter

—limZ—:=0,1<a<b

0200

Big Q

Anyg=0,c>0,if f(n) =c-gn)vn = n,,
then f(n) = Q(g(n))

» Constant factors are ignored
* Lower bound

Big ©

if f(n) = 0(g(m)) and f(n) = Q(g(n))
then f(n) = 0(g(n))

+ Constant factors are ignored
+ Tight bound

Relatives
| Notation | Relational Form | Limit Definition |
fm=o0(@m) fm<gm lim N _
n-0 g(n)
fm=0@m) fe<gm limlZ—co
n—e g ()
f=0gmn) fm)~gmn) im £ _
n-0 g(n)
f@=0@gm) fm)>gm lim M _
nowogm)
f _

fm) =wl@®) f0)>gmn)

m —— =
n—»oog(n) 23

1/28/26

f) <~ g(n)?

+ f(n) =3%,g(n) = 27

* f(n) =log(n*),g(n) = (logn)*

° f(n) — nlog4’g(n) = p2logn

e f(n) = max(n?,n?),g(n) =n? +ns
e f(n) = min(2",210007), g(n) = nto00

Summations

¢ Constant series
b

Zl = max(b—a+1,0)
i=a

¢ Arithmetic series
n

nn+1
Zi=1+2+--~+n= (2—)€®(n2)
=1

¢ Geometric series
n

2: c"l-1 (e(),c<1
[- 2 n _—_ ’
ct=14c+c*..+c""= ——¢ {@("),C>25

i=0

Summations
* Quadratic series
= 2n3 +3n2+4+n
ZF =124224 . 4n?= —

=1
€ 0(nd)
* Linear-geometric series
n

Zici =c+2c?+ - +nc"
=1
n—1)c"1 —nc" +¢
=() > € 0(nc™)
(C_l) 26

Summations

* Harmonic series

n
1 1 1 1
Hn_Zl__1+2_+3_++TT_ 1nn+0(1)

=1

27

Time Analysis

* Line-by-line analysis of pseudo code to
write a polynomial
— sequential work is summed
« justify any line that is not clearly 0(1)
— loops (# iterations x work in body)
» number of iterations
« justify any line in the body that is not clearly 0(1)
» Simplify to the dominant terms and state
final big-O

28

Linear Time Algorithms:0(n)

* The algorithm’s running time is at most a
constant factor times the input size

* Process the input in a single pass

spending constant time on each item
— Max/min algorithm, linear search

* Charging scheme, each item of input is

charged once
— Merge two already sorted lists

O(nlogn) time

Frequent running time in cases when
algorithms involve:

+ Sorting
 Divide and conquer

Quadratic Time: 0(n?)

* All pairs in a list
» Every pair of points is processed

— Nearest neighbor

* Nested loops

1/28/26

1/28/26

0(n*) Time Slower than Polynomial Time

+ Consider all subsets of points of size k + All subsets of sets (power set): 0(2™)

* Number of ways to match n items with
each other: 0(n!)

Sublinear Time

* Query in a binary search tree: O(lg n) | o/ om)

* In general, if we can throw away a
constant fraction of the input with each ‘
step of the algorithm, we can achieve |
sublinear time.

Time

O(log n)

Data Input (Space)
36

