
1/28/26

1

Notes

• Office hours: Tuesdays 2pm-4pm

• TA hours:

– Cecilia Chen, Saturdays 6pm-8pm, Park231

• First assignment out (due next Monday)

• Electronic submission on Moodle

• LaTeX tutorial and templates on course
website

• Sample write-up on Moodle
1

CS 340 - Analysis of Algorithms
Stable Matching Analysis

Dianna Xu

Stable Matching

• Input
– A set of employers: !
– A set of applicants: "
– ! = " = %
– 2% preference lists, each of size %
– How are the preference lists stored?

• linked lists? arrays? hash maps? why?

• Output: ', a list/set of % pairs

3

Gale-Shapley Algorithm
all ! in " and # in $ are unpaired
while there is an ! unmatched that hasn't made an
offer to every #:

choose such an !
let # be the highest-ranked applicant in the preference
list of !, to whom ! has not made an offer
if # is unpaired then pair # and !
else # is currently paired with some !′

if # prefers !′ to ! then ! remains unpaired
else # is paired with ! and !′ becomes unpaired

return the set of pairs

Example
Employers Applicants

Google(G) Intel(I) Apple(A) Kate(K) Clara(C) Lisa(L)
K K L A A G
C L K G I I
L C C I G A

5

G→K
I→K
I→L
A→L
A→K
G→C

[G-K]
rejected
[G-K, I-L]
rejected
[A-K, I-L]
[A-K, I-L, G-C]

Analysis

• What can we say about the progression of
matches from the employers point of
view?

• The applicants point of view?
• How many iterations might the algorithm
execute?

• Is the matching always stable?

1/28/26

2

Observations

• Employers: applicants only get worse

• Applicants: jobs only get better and never
lose a job once they have one

Proof of termination

Proof:
• An employer only proposes to a new

applicant and never again
• There are at most !" such pairings

!" iterations of the while loop

Proof of correctness
• Will all employers and applicants be

matched? - Is the matching perfect?

Proof (by contradiction):
– Suppose there is some employer e who didn’t

hire.
– Then there is some applicant a who doesn’t

get a job.
– So e didn’t offer a a job. But e was required to

offer everyone a job.
Contradiction

9

Proof of correctness: Stability

• Is the matching always stable?

Proof of stability (by contradiction):
– Suppose ! − # is an unstable pair. (What

does this mean?)
– ! − # and !′ − #′ are both unstable because !

and #′ want to switch
– How could this have happened?

• Case 1: ! never offered #′ a job
• Case 2: ! did offer #′ a job

!

!’

#

#′

Analysis

• So what is the running time of this
algorithm?
– while loop runs !" iterations
– make data structure decisions and analyze
based on data structure operation costs

– consult the writeup sample provided

Gale-Shapley Again
all ! in " and # in $ are unpaired
while there is an ! unmatched that hasn't made an
offer to every #:

choose such an !
let # be the highest-ranked applicant in the preference
list of !, to whom ! has not made an offer
if # is unpaired then pair # and !
else # is currently paired with some !′

if # prefers !′ to ! then ! remains unpaired
else # is paired with ! and !′ becomes unpaired

return the set of pairs

1/28/26

3

Data Structures

• Employers are assigned ! unique int IDs
"#, … , "&

• Applicants are assigned ! unique int IDs
'#, … , '(

• Preference lists are 2D int arrays that are
indexed by the IDs, storing rank as
integers

13

Data Structures
Applicant plists:
• "#: %&, %()*, %(,… , %,, %*
• 2D array of size -×-:

– /["#] %* = -
– / "# %, = -−1
– / "# %& = 1
– …
– /["#] %()* = 2
– /["#] %(= 3

• if "# prefers %8 to %9
– if (P[ak][ei]<P[ak][ej])

Employer plists: - sorted
arrays of size -
:: integer array of size -,
indexed by the applicants
and stores matched
employer IDs
Queue of size - for offer
making

14

Analysis

• Is this algorithm better for the employers
or the applicants?

• What does “better” mean?
– evaluated collectively

• Answer by lab
– examples of different stable matchings for the
same input, together with exact preference
lists

– precise definition of “better”

CS 340 - Analysis of Algorithms
Complexity

Dianna Xu

Big O

∃ "# ≥ 0, ' > 0, if) " ≤ ' + , " ∀" ≥ "#,
then) " = /(, ")

• Constant factors are ignored
• Upper bound

• lim6→8
9(6)
:(6) ≤ '

How do these functions grow?

• "# $ =
43$(log, $ + 12$0123$ + 52$123$ =
5(0123)

• "($ = 15$(+ 7$1230$ = 5($()
• "0 $ = 3$ + 4 log9 $ + 91$(= 5($()
• ", $ = 13 ⋅ 3(<=> + 4$> = 5(9<)
• "9 $ = ∑@AB< #

(C = 5(1)

19

1/28/26

4

Useful Facts
• polynomials grow faster than polylogs
– lim%→'

()*% +

%, = 0 , 0, 1 > 0
• exponentials grow faster than polynomials

– lim%→'
%+
34 = 0, 0 > 0, 1 > 1

• log bases do not matter
– lim%→'

678+ %
678, % = c ≠ 0, 0, 1 > 1

• exponential bases do matter

– lim%→'
;4
34 = 0, 1 < 0 < 1 20

Big Ω
∃ #$ ≥ 0, (> 0, if * # ≥ (+ , # ∀# ≥ #$,
then * # = Ω(, #)

• Constant factors are ignored
• Lower bound

Big Θ
if " # = % & # and " # = Ω & #
then " # = Θ(& #)

• Constant factors are ignored
• Tight bound

Relatives
Notation Relational Form Limit Definition

! " = $(& ") ! " ≺ & " lim,→.
!(")
&(") = 0

! " = 0(& ") ! " ≼ & " lim,→.
!(")
&(") = 2, 0

! " = Θ(& ") ! " ≈ & " lim,→.
!(")
&(") = 2

! " = Ω(& ") ! " ≽ & " lim,→.
!(")
&(") = 2,∞

! " = 9(& ") ! " ≻ & " lim,→.
!(")
&(") = ∞

23

! " ≺≈≻ & " ?
• ! " = 3

+
,, & " = 2

+
/

• ! " = log("4), & " = (67&")4
• ! " = "89:;, & " = 2489:<
• ! " = max "4, "@ , & " = "4 + "@
• ! " = min 2<, 2DEEE" , & " = "DEEE

24

Summations

• Constant series

!
"#$

%
1 = max(, − . + 1, 0)

• Arithmetic series

!
"#3

4
5 = 1 + 2 +⋯+8 = 8 8 + 1

2 ∈ Θ 8;

• Geometric series

!
"#<

4
=" = 1 + = + =;…+ =4 = =4?3 − 1

= − 1 ∈ @ Θ 1 , = < 1
Θ =4 , = > 125

1/28/26

5

Summations

• Quadratic series

!
"#$

%
&' = 1' + 2' +⋯+-' = 2-. + 3-' + -

6
∈ Θ -.

• Linear-geometric series

!
"#$

%
&3" = 3 + 23' +⋯+ -3%

= - − 1 3%5$ − -3% + 3
3 − 1 ' ∈ Θ -3%

26

Summations

• Harmonic series

!" =$
%&'

" 1
) = 1 + 12 +

1
3 +⋯+ 1. = ln. +1(1)

27

Time Analysis

• Line-by-line analysis of pseudo code to
write a polynomial
– sequential work is summed

• justify any line that is not clearly !(1)
– loops (# iterations × work in body)

• number of iterations
• justify any line in the body that is not clearly !(1)

• Simplify to the dominant terms and state
final big-O

28

Linear Time Algorithms:!(#)
• The algorithm’s running time is at most a

constant factor times the input size
• Process the input in a single pass

spending constant time on each item
– Max/min algorithm, linear search

• Charging scheme, each item of input is
charged once
– Merge two already sorted lists

! "#$%" time

Frequent running time in cases when
algorithms involve:

• Sorting
• Divide and conquer

Quadratic Time: !(#$)
• All pairs in a list
• Every pair of points is processed

– Nearest neighbor

• Nested loops

1/28/26

6

!(#$) Time
• Consider all subsets of points of size &

Slower than Polynomial Time
• All subsets of sets (power set): ! 2#

• Number of ways to match $ items with
each other: !($!)

Sublinear Time
• Query in a binary search tree: O(lg n)

• In general, if we can throw away a
constant fraction of the input with each
step of the algorithm, we can achieve
sublinear time.

36

