CS 340 - Analysis of Algorithms
Week 2 Lab

Dianna Xu

A B X
Example & y 5 5

y X A B

* A minimal extreme example where:

—employers have the exact opposite
preferences from the applicants

— GS matching: [A-x, B-y]
— What about [A-y, B-x]?

* Employers get the “best possible”

matching

» Evaluated collectively

Employers Applicants

Best Possible

e a is a valid match for e if there is some
stable matching that includes the pair
(e,a)

* let best(e) return the highest ranked valid
match of e

» A matching S* is “best possible” when
-S*= (e, best(e)), Ve € E

Data Structures

+ State your data structure choices
* Reason how specific data structure

construction/update/access times affect
your time analysis

Unsorted | Sorted Unsorted Sorted Balanced
array array list [5 BST

search o(n) O(logn) o(n) o(n) O(logn)
insert o) o(n) o) om) 0(logn)
remove o) om) o(1) 0(1) O(logn)
min/max om) o(1) o) 0(1) 0(logn)

Understanding Efficiency

* Goal: Algorithms should be fast and not
use too much space

» We’'ll concentrate mostly on time analysis

* What does this mean quantitatively?

—not dependent on platforms, problem
instances, input sizes

Asymptotic Notation

» Provides a way to simplify analysis

Allows us to ignore less important elements
— constant factors

Focus on the largest growth of n

Focus on the dominant term

We measure time complexity with the input
size, i.e. n of the 0(n)

- n is just a variable, it can be a function of any
complexity 6

1/28/26

How do these functions grow?

e f1(x) = 43x?%log* x + 12x3logx + 52xlogx
1 g g g

o f,(x) = 15x2 + 7xlog3x

e f3(x) =3x + 4logs x + 91x2

o f(x) =13-32%*+9 4 4x°

() =30z

Big O

Ang=0,c>0,if f(n) <c-gm)vn = n,,
then f(n) = 0(g(n))

» Constant factors are ignored
« Upper bound

cg(n)

e lim uw <c
n—oo g(n)

ny

Gale-Shapely is Linear!

* Input « while loop runs n?
— A set of employers: E iterations
— Asetofapplicants: A« n? = 0(2n%) = O(N)
- |El=|Al=n
- 2n preference lists,
each of size n

+ Size of input: 2n?
s Let N = 2n?

Read and Review

e Chapter 2 — review < Review binary search

heaps trees
e Chapter 3 — AVL or Red/Black
- BFS — search
— DFS — insertion
— Properties — deletion
— Implementations — traversal

Previous Greater Element

A list of numeric values (a,, a,, ..., a,)

* For each q;, find the index of the rightmost
element of the sequence (a,,a,,...,a;_1)
whose value is strictly greater than a;, or 0

*0Oray=m

e p; = max{j|0 <j < iand a; > a;}

0 @) a3 a3 a5 a5 ag a7 ag agarg 1
pli]:0 1034440838

Worst-case Analysis

» Dominated by the time spent in the inner

loop
T(n) =%, X551

e=14+24+-n-2)+(n-1)

* = Z?=_11i
. — (n-1)n
T2
e €0(n?)

1/28/26

Improvement?

Naive Solution

Improvement

* When computing p;, we already know the
values of p; to p;_,

» Use p values to leapfrog the inner loop

0 o

— -
p 00010305 a5 g 7 Gs Agaly dg a1 g 6 4j 5 G 47 05 G9al
P01 03456088 plij:010345608S8

//input: an array of numeric values all..n]
//returns: an array p[l..n] where p[i] stores the
//index of the previous larger element of al[i]
PL(a) {
for (i = 1 to n) {
j = 1i-1
while (>0 and a[j] <= a[il)
j__
plil =3
}
return p
} 14
//input: an array of numeric values all..n]

//returns: an array p[l..n] where p[i] stores the

//index of the previous larger element of al[i]

PL(a, n) {
for (i =1 to n) {
3 o= i-1
while (>0 and a[j] <= a[il)
j = pl]l]
pli]l =3
}

return p

Is it really better? iy =

agara; fi3 a1 as
01034

* a;,..,a;_q in decreasing order, a; is larger
than all: (as, ..., ag) in the example
— processing a; will force 0(i —j — 1) steps

— can this happen all the time?

* ity 2
®ait1 <q;
—once p; is set, we never visit aj, ..., a;—; again
—atmostn
—or while is not executed at all — at most n
* 0(n) "

1/28/26

