

CS 340 - Analysis of Algorithms Week 2 Lab

Dianna Xu

Example

Employers		Applicants	
A	B	x	y
x	y	B	A
y	x	A	B

- A minimal extreme example where:
 - employers have the exact opposite preferences from the applicants
 - GS matching: [A-x, B-y]
 - What about [A-y, B-x]?
- Employers get the "best possible" matching
- Evaluated *collectively*

2

Best Possible

- a is a *valid match* for e if there is some stable matching that includes the pair (e, a)
- let $best(e)$ return the highest ranked valid match of e
- A matching S^* is "best possible" when
 - $S^* = (e, best(e)), \forall e \in E$

3

Data Structures

- State your data structure choices
- Reason how specific data structure construction/update/access times affect your time analysis

	Unsorted array	Sorted array	Unsorted list	Sorted list	Balanced BST
search	$O(n)$	$O(log n)$	$O(n)$	$O(n)$	$O(log n)$
insert	$O(1)^*$	$O(n)$	$O(1)$	$O(n)$	$O(log n)$
remove	$O(1)^*$	$O(n)$	$O(1)$	$O(1)$	$O(log n)$
min/max	$O(n)$	$O(1)$	$O(n)$	$O(1)$	$O(log n)$

4

Understanding Efficiency

- Goal: Algorithms should be fast and not use too much space
- We'll concentrate mostly on time analysis
- What does this mean quantitatively?
 - not dependent on platforms, problem instances, input sizes

Asymptotic Notation

- Provides a way to simplify analysis
- Allows us to ignore less important elements
 - constant factors
- Focus on the largest growth of n
- Focus on the dominant term
- We measure time complexity with the input size, i.e. n of the $O(n)$
 - n is just a variable, it can be a function of any complexity

6

How do these functions grow?

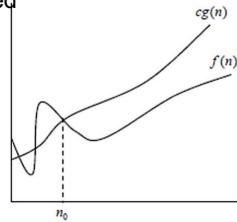
- $f_1(x) = 43x^2 \log^4 x + 12x^3 \log x + 52x \log x$
- $f_2(x) = 15x^2 + 7x \log^3 x$
- $f_3(x) = 3x + 4 \log_5 x + 91x^2$
- $f_4(x) = 13 \cdot 3^{2x+9} + 4x^9$
- $f_5(x) = \sum_{x=0}^{\infty} \frac{1}{2^x}$

7

Big O

$\exists n_0 \geq 0, c > 0$, if $f(n) \leq c \cdot g(n) \forall n \geq n_0$,
then $f(n) = O(g(n))$

- Constant factors are ignored
- Upper bound
- $\lim_{n \rightarrow \infty} \frac{f(n)}{g(n)} \leq c$



Gale-Shapely is Linear!

- Input
 - A set of employers: E
 - A set of applicants: A
 - $|E| = |A| = n$
 - $2n$ preference lists, each of size n
- Size of input: $2n^2$
- Let $N = 2n^2$
- while loop runs n^2 iterations
- $n^2 = O(2n^2) = O(N)$

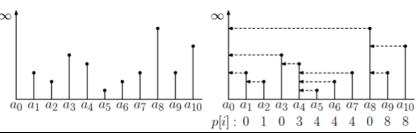
Read and Review

- Chapter 2 – review
 - binary search
 - heaps
- Chapter 3
 - BFS
 - DFS
 - Properties
 - Implementations
- Review binary search trees
 - AVL or Red/Black
 - search
 - insertion
 - deletion
 - traversal

10

Previous Greater Element

- A list of numeric values $\langle a_1, a_2, \dots, a_n \rangle$
- For each a_i , find the index of the rightmost element of the sequence $\langle a_1, a_2, \dots, a_{i-1} \rangle$ whose value is strictly greater than a_i , or 0
- or $a_0 = \infty$
- $p_i = \max\{j \mid 0 \leq j < i \text{ and } a_j > a_i\}$



11

Worst-case Analysis

- Dominated by the time spent in the inner loop
- $T(n) = \sum_{i=1}^n \sum_{j=0}^{i-1} 1$
- $= 1 + 2 + \dots + (n-2) + (n-1)$
- $= \sum_{i=1}^{n-1} i$
- $= \frac{(n-1)n}{2}$
- $\in \Theta(n^2)$

12

Improvement?

13

Naïve Solution

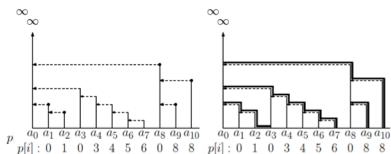
```
//input: an array of numeric values a[1..n]
//returns: an array p[1..n] where p[i] stores the
//index of the previous larger element of a[i]

PL(a) {
    for (i = 1 to n) {
        j = i-1
        while (j>0 and a[j] <= a[i])
            j--
        p[i] = j
    }
    return p
}
```

14

Improvement

- When computing p_i , we already know the values of p_1 to p_{i-1}
- Use p values to leapfrog the inner loop



15

Improved Solution

```
//input: an array of numeric values a[1..n]
//returns: an array p[1..n] where p[i] stores the
//index of the previous larger element of a[i]

PL(a, n) {
    for (i = 1 to n) {
        j = i-1
        while (j>0 and a[j] <= a[i])
            j = p[j]
        p[i] = j
    }
    return p
}
```

16

Is it really better?

- a_j, \dots, a_{i-1} in decreasing order, a_i is larger than all: (a_3, \dots, a_8) in the example
 - processing a_i will force $O(i - j - 1)$ steps
 - can this happen all the time?
 - $a_{i+1} \geq a_i$
 - $a_{i+1} < a_i$
 - once p_i is set, we never visit a_j, \dots, a_{i-1} again
 - at most n
 - or while is not executed at all – at most n
 - $O(n)$

17

