
1/28/26

1

CS 340 - Analysis of Algorithms
Week 2 Lab

Dianna Xu

Example

• A minimal extreme example where:
– employers have the exact opposite
preferences from the applicants

– GS matching: [A-x, B-y]
– What about [A-y, B-x]?

• Employers get the ”best possible”
matching

• Evaluated collectively

2

Employers Applicants
A B x y
x y B A
y x A B

Best Possible

• " is a valid match for # if there is some
stable matching that includes the pair
#, "

• let %#&'(#) return the highest ranked valid
match of #

• A matching *∗ is “best possible” when
– *∗ = #, %#&' # , ∀# ∈ 0

3

Data Structures

• State your data structure choices
• Reason how specific data structure

construction/update/access times affect
your time analysis

4

Unsorted
array

Sorted
array

Unsorted
list

Sorted
list

Balanced
BST

search !(#) !(%&'#) !(#) !(#) !(%&'#)
insert ! 1 ∗ !(#) !(1) !(#) !(%&'#)
remove ! 1 ∗ !(#) !(1) !(1) !(%&'#)
min/max !(#) !(1) !(#) !(1) !(%&'#)

Understanding Efficiency

• Goal: Algorithms should be fast and not
use too much space

• We’ll concentrate mostly on time analysis
• What does this mean quantitatively?

– not dependent on platforms, problem
instances, input sizes

Asymptotic Notation

• Provides a way to simplify analysis
• Allows us to ignore less important elements

– constant factors
• Focus on the largest growth of !
• Focus on the dominant term
• We measure time complexity with the input

size, i.e. ! of the " !
– ! is just a variable, it can be a function of any

complexity 6

1/28/26

2

How do these functions grow?

• "# $ = 43$(log, $ + 12$0123$ + 52$123$
• "($ = 15$(+ 7$1230$
• "0 $ = 3$ + 4 log6 $ + 91$(
• ", $ = 13 ⋅ 3(9:; + 4$;

• "6 $ = ∑9=>? #
(@

7

Big O

∃ "# ≥ 0, ' > 0, if) " ≤ ' + , " ∀" ≥ "#,
then) " = /(, ")

• Constant factors are ignored
• Upper bound

• lim6→8
9(6)
:(6) ≤ '

Gale-Shapely is Linear!
• Input

– A set of employers: !
– A set of applicants: "
– ! = " = %
– 2% preference lists,

each of size %
• Size of input: 2%'
• Let (= 2%'

• while loop runs %'
iterations

• %' = * 2%' = *(()

Read and Review
• Chapter 2 – review

heaps
• Chapter 3

– BFS
– DFS
– Properties
– Implementations

• Review binary search
trees
– AVL or Red/Black
– search
– insertion
– deletion
– traversal

10

Previous Greater Element
• A list of numeric values !", !$, … , !&
• For each !', find the index of the rightmost

element of the sequence !", !$, … , !'("
whose value is strictly greater than !', or 0

• or !* = ∞
• .' = max 2|0 ≤ 2 < 6 and !7 > !'

11

Worst-case Analysis

• Dominated by the time spent in the inner
loop

• " # = ∑&'() ∑*'+&,(1
• = 1 + 2 +⋯ # − 2 + # − 1
• = ∑&'(),(2
• = (),())

5
• ∈ Θ(#5)

12

1/28/26

3

Improvement?

13

Naïve Solution
//input: an array of numeric values a[1..n]
//returns: an array p[1..n] where p[i] stores the

//index of the previous larger element of a[i]

PL(a) {
for (i = 1 to n) {

j = i-1

while (j>0 and a[j] <= a[i])
j--

p[i] = j
}
return p

}
14

Improvement

• When computing !", we already know the
values of !# to !"$#

• Use ! values to leapfrog the inner loop

15

Improved Solution
//input: an array of numeric values a[1..n]
//returns: an array p[1..n] where p[i] stores the

//index of the previous larger element of a[i]

PL(a, n) {
for (i = 1 to n) {

j = i-1

while (j>0 and a[j] <= a[i])
j = p[j]

p[i] = j
}
return p

}
16

Is it really better?

17

• "#, … , "&'(in decreasing order, "& is larger
than all: ("*, … , "+) in the example
– processing "& will force -(. − 0 − 1) steps
– can this happen all the time?

• "&2(≥ "&
• "&2(< "&

– once 5& is set, we never visit "#,… , "&'(again
– at most 6

– or while is not executed at all – at most 6
• -(6)

