
2/3/26

1

CS 340 - Analysis of Algorithms
Graph Theory Review

Dianna Xu

Graph
• A graph ! = #,%
represents a set of
vertices # and a set of
edges %.

• % may consist of
unordered or ordered
pairs of vertices and the
resulting graph is
undirected/directed.

• Edges and vertices may
have weights

2

Terminology

• Given an edge ! = ($, &), $ and & are
endpoints of ! and ! is incident on $ and
&. $ and & are adjacent.

• The degree of a vertex deg(&) is the
number of incident edges on & in an
undirected graph, or the number of
outgoing edges in a directed graph.

• , = -
• . = /

3

Basic Graph Size Estimates
• Undirected graph

! = 0 ≤ % ≤ &
2

= & & − 1
2 = *(&,)

.
/∈1

deg 5 = 2%

• Directed graph

! = 0 ≤ % ≤ &(& − 1)
= *(&,)

.
/∈1

indeg 5 = %

.
/∈1

outdeg 5 = %

4

Terminology

• A path in a graph is a sequence of vertices
!", … , !% such that (!'(), !') is an edge
for + = 1,… , .

• The length of a path is the number of
edges, ..

• A cycle is a path containing at least one
edge and for which !" = !%

• A cycle is simple if its edges and vertices
(except for !" and !%) are distinct. 5

Terminology

• An acyclic graph contains no simple cycles
• An acyclic connected graph is a tree
• The vertices of a bipartite graph can be
partitioned into two disjoint subsets, !" and
!# such that all edges have one endpoint
in !" and the other one in !#

6

2/3/26

2

Representation

• Adjacency matrix: An !×! matrix defined
for 1 ≤ %,' ≤ !: (), * = 1 if ,, % ∈ .

• Adjacency list: An array of pointers where
for 1 ≤ % ≤ ! , (/*[%] points to a list
containing the vertices that are adjacent to
%

7

Undirected Graphs

8

• Adjacency matrix: store the edges twice
• Adjacency list: cross-links

Graph
Traversals: BFS

• Given a graph ! = ($, &) , breadth-first
search starts at some vertex (and visits
vertices reachable from (in layers.

• Define the distance between a vertex)
and (to be the minimum number of edges
on a path from (to).

• BFS visits the vertices in increasing order
of distance.

9

BFS

BFS(G, s) {
set mark to all false
mark[s] = true, Q = {s}
while (Q is not empty) {
u = dequeue of Q
for each (v in Adj[u]) {
if (!mark[v]){
mark[v]=true
append v to Q

}
}

}

• mark array (booleans,
indexed by vertices)
tracks which vertices
have been visited

• Q is a FIFO queue
• Q contains the frontier
(discovered but
unvisited) vertices

10

BFS on a Graph

11

BFS Time Analysis
• " = $, & = '
• Initialization requires (($)
• Traversal loop

– while: we never visit a vertex
twice

– for each: depends on the
degree of vertex

• + $, ' = $ + ∑.∈0(deg 4 + 1)
• = $ + ∑.∈0 deg 4 + ∑.∈0 1
• = $ + ∑.∈0 deg 4 + $
• = 2$ + ∑.∈0 deg 4
• = 2$ + 2'
• (($ + ')

12

BFS(G, s) {
set mark to all false
mark[s] = true, Q = {s}
while (Q is not empty) {
u = dequeue of Q
for each (v in Adj[u]) {
if (!mark[v]){
mark[v]=true
append v to Q

}
}

}

2/3/26

3

BFS with More Record Keeping
BFS(G, s) {
for each (u in V) {
mark[u] = false, d[u] = infinity, pred[u] = null

}
mark[s] = true, d[s] = 0, Q = {s}
while (Q is not empty) {
u = dequeue of Q
for each (v in Adj[u]) {
if (!mark[v]){
mark[v] = true
d[v] = d[u]+1
pred[v] = u
append v to Q

}
}

}

13

Graph
Traversals: DFS

• Given a graph ! = #, % , depth-first
traversal strives for maximal depth and
backtracks only when necessary.

• Recursive algorithm

14

DFS

• mark array used to
track seen vertices

• The wrapper is only
needed if not all
vertices are reachable
from source

15

DFSG(G) {
set mark to all false
for each (v in V) {
if (!mark(v))
DFS(v)

}
}
DFS(u) {
mark[u] = true
for each (v in Adj[u]) {
if (!mark[v]){
DFS(v)

}
}

}

DFS on Graph

16

Running Time
• " = $, & ='
• Initialization (($)
• DFS is called once per

vertex (in wrapper or
recursively)

• + $,' = $+
∑.∈0(deg 4 +1)

• = $+∑.∈0deg 4 +∑.∈01
• = 2$+∑.∈0deg 4
• = 2$+2'
• (($+')

17

DFSG(G) {
set mark to all false
for each (v in V) {
if (!mark(v))
DFS(v)

}
}
DFS(u) {
mark[u] = true
for each (v in Adj[u]) {
if (!mark[v]){
DFS(v)

}
}

}

DFS Additional Record Keeping

18

DFSG(G) {
time = 0
for each (u in V) {
mark[u] = unseen

}
for each (u in V) {
if (mark[u] == unseen)
DFS(u)

}
}

DFS(u) {
mark[u] = seen
s[u] = time++
for each (v in Adj[u]) {
if (mark[v] == unseen){
pred[v] = u
DFS(v)

}
}
mark[u] = finished
f[u] = time++

}

• start times array: s
• finish times array: f
• predecessors array: pred

2/3/26

4

DFS on Undirected Graph

19
Nodes labeled with s[u]/f[u]

DFS on Directed Graph

20

DFS Edge
Classification

• If ! is visited for the first time as we
traverse (#, !), then (#, !) is a tree edge

• else, ! has already been visited
– if ! is an ancestor of #, (#, !) is a back edge
– if ! is a descendent of #, then (#, !) is a

forward edge
– if ! is neither, then (#, !) is a cross edge

21

CS 340 - Analysis of Algorithms
Greedy Algorithms – Interval

Scheduling
Dianna Xu

Optimization Problems

• Arise naturally in many applications of
science and engineering

• Problem is subject to various constraints
• Want to minimize cost or maximize

objective
• Efficient solutions are not a given
• Optimality also a concern

23

Greedy Algorithms

• An algorithm that builds up a solution by
“myopically” selecting the best choice at
the moment

• Greedy algorithms don’t always produce
optimal solutions

• Even when they don’t, they provide fast
heuristics that gives us good
approximations

24

2/3/26

5

Interval Scheduling

• Given a set ! of " activities with start-
finish times #$, &$, 1 ≤) ≤ ", determine a
maximum subset of ! consisting of
compatible requests

25

Example

26

Greedy Design Basics

• For each request, use a simple rule to
decide if it should be accepted.

• Once accepted, it can not be rescinded
(greedy does not backtrack).

• What criteria should we use here?

27

Approaches

• Earliest
Activity First

• Shortest
Activity First

• Lowest
Conflict
Activity First

28

Earliest Finish First
greedySchedule(R) { // R the set of requests

A = empty // A the set of scheduled activities
while (R is nonempty) {

r = request in R with the smallest finish time
append r to A

delete from R all requests that overlap r
}
return A

}

29

30

Interval Scheduling

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

0 1 2 3 4 5 6 7 8 9 10 11

Fill in the schedule:

2/3/26

6

31

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

32

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B C

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

33

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
BA

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

34

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B E

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

35

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B ED

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

36

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B E F

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

2/3/26

7

37

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B E G

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

38

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B E

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

H

Earliest Finish First
greedySchedule(R) { // R the set of requests

A = empty // A the set of scheduled activities
sort R by finish times
prevA = null // last picked activity
for (each r in R) {

if (r doesn’t conflict with prevA) {
append r to A
prevA = r

}
}

return A
}

39

Time Analysis
• " = $
• Naïve implementation

– while runs O($)
– findmin, delete overlap each runs (($)
– (($*)

• Sort " by finish time first – (($+,-$)
– while changes to for and runs (($)
– findmin/delete not needed any more
– (($+,-$ + $) = (($+,-$) 40

Correctness

• Valid schedule?
• Optimality?
– maximizes the solution cardinality, i.e. does it
schedule the max number of activities?

41

Proof

• Consider any optimal schedule ! and let "
be the schedule produced by greedy

• If ! = " then we are done
• Otherwise, show we can construct a
schedule !′ that is more similar to " than it
is to ! , and keep going so that !
converges to ".

42

2/3/26

8

Proof

• Order the activities in the schedules in
increasing finishing times.

• Let ! = #$, #&, … , #(
• Since ! and) differ, we have:
– ! = #$,… , #+,$, #+,…
–) = #$,… , #+,$, -+,… , where -+ ≠ #+
– Note / ≥ 1 (why?)
– -+ has earlier finish time than #+
– replace #+ with -+ in !, resulting in !′ 43

Proof

• "′ is valid
– %& does not conflict with earlier activities
– or later activities

• and optimal (same cardinality)
• Keep doing it until "′ becomes '
• What if " > |'|?

44

Lemma: Greedy Has Earlier
Finish Times

• Given ! = #$%, #'% ,… , #$) , #') , … and * =
+$%, +'% ,… , #$) , #') , … ,

• Claim: +') ≤ !') ∀.
• Proof by induction

– base case . = 1: by greedy construction
– inductive hypothesis: +')0% ≤ !')0%
– inductive step: #$) > +')0%, thus job #2 has no conflict

with +234 → #2 was in the pool Greedy considered but
didn’t pick→+') ≤ #')

• ! = |*| 45

