

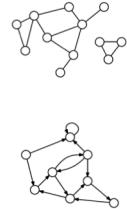
CS 340 - Analysis of Algorithms

Graph Theory Review

Dianna Xu

Graph

- A graph $G = (V, E)$ represents a set of vertices V and a set of edges E .
- E may consist of unordered or ordered pairs of vertices and the resulting graph is undirected/directed.
- Edges and vertices may have weights



2

Terminology

- Given an edge $e = (u, v)$, u and v are *endpoints* of e and e is *incident* on u and v . u and v are *adjacent*.
- The *degree* of a vertex $\deg(v)$ is the number of incident edges on v in an undirected graph, or the number of outgoing edges in a directed graph.
- $|V| = n$
- $|E| = m$

3

Basic Graph Size Estimates

• Undirected graph	• Directed graph
$ E = 0 \leq m \leq \binom{n}{2}$	$ E = 0 \leq m \leq n(n-1)$
$= \frac{n(n-1)}{2} = O(n^2)$	$= O(n^2)$
$\sum_{v \in V} \deg(v) = 2m$	$\sum_{v \in V} \text{indeg}(v) = m$
	$\sum_{v \in V} \text{outdeg}(v) = m$

4

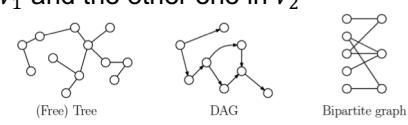
Terminology

- A *path* in a graph is a sequence of vertices $\langle v_0, \dots, v_k \rangle$ such that (v_{i-1}, v_i) is an edge for $i = 1, \dots, k$
- The *length* of a path is the number of edges, k .
- A *cycle* is a path containing at least one edge and for which $v_0 = v_k$
- A cycle is *simple* if its edges and vertices (except for v_0 and v_k) are distinct.

5

Terminology

- An *acyclic* graph contains no simple cycles
- An acyclic connected graph is a *tree*
- The vertices of a *bipartite* graph can be partitioned into two disjoint subsets, V_1 and V_2 such that all edges have one endpoint in V_1 and the other one in V_2



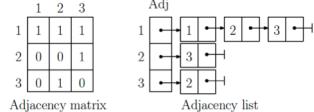
6

Representation

- Adjacency matrix: An $n \times n$ matrix defined for $1 \leq v, w \leq n$: $A[i, j] = 1$ if $(u, v) \in E$
- Adjacency list: An array of pointers where for $1 \leq v \leq n$, $Adj[v]$ points to a list containing the vertices that are adjacent to v

	1	2	3
1	1	1	1
2	0	0	1
3	0	1	0

Adjacency matrix

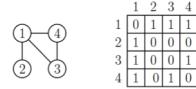


Adjacency list

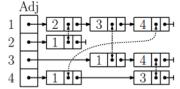
7

Undirected Graphs

- Adjacency matrix: store the edges twice
- Adjacency list: cross-links



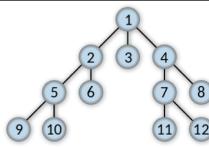
Adjacency matrix



Adjacency list (with crosslinks)

8

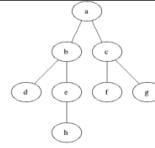
Graph Traversals: BFS



- Given a graph $G = (V, E)$, breadth-first search starts at some vertex s and visits vertices reachable from s in layers.
- Define the distance between a vertex v and s to be the minimum number of edges on a path from s to v .
- BFS visits the vertices in increasing order of distance.

9

BFS

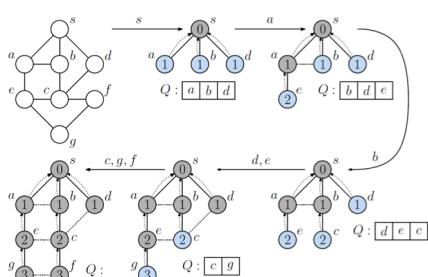


```
BFS(G, s) {
    set mark to all false
    mark[s] = true, Q = {s}
    while (Q is not empty) {
        u = dequeue of Q
        for each (v in Adj[u]) {
            if (!mark[v]){
                mark[v]=true
                append v to Q
            }
        }
    }
}
```

- mark array (booleans, indexed by vertices) tracks which vertices have been visited
- Q is a FIFO queue
- Q contains the frontier (discovered but unvisited) vertices

10

BFS on a Graph



11

BFS Time Analysis

```
BFS(G, s) {
    set mark to all false
    mark[s] = true, Q = {s}
    while (Q is not empty) {
        u = dequeue of Q
        for each (v in Adj[u]) {
            if (!mark[v]){
                mark[v]=true
                append v to Q
            }
        }
    }
}
```

- $|V| = n, |E| = m$
- Initialization requires $O(n)$
- Traversal loop
 - while: we never visit a vertex twice
 - for each: depends on the degree of vertex
- $T(n, m) = n + \sum_{u \in V} (\deg(u) + 1)$
- $= n + \sum_{u \in V} \deg(u) + \sum_{u \in V} 1$
- $= n + \sum_{u \in V} \deg(u) + n$
- $= 2n + \sum_{u \in V} \deg(u)$
- $= 2n + 2m$
- $O(n + m)$

12

BFS with More Record Keeping

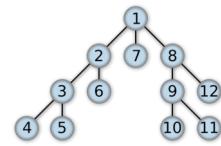
```

BFS(G, s) {
    for each (u in V) {
        mark[u] = false, d[u] = infinity, pred[u] = null
    }
    mark[s] = true, d[s] = 0, Q = {s}
    while (Q is not empty) {
        u = dequeue of Q
        for each (v in Adj[u]) {
            if (!mark[v]){
                mark[v] = true
                d[v] = d[u]+1
                pred[v] = u
                append v to Q
            }
        }
    }
}

```

13

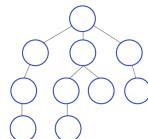
Graph Traversals: DFS



- Given a graph $G = (V, E)$, depth-first traversal strives for maximal depth and backtracks only when necessary.
- Recursive algorithm

14

DFS



```

DFS(G) {
    set mark to all false
    for each (v in V) {
        if (!mark(v))
            DFS(v)
    }
}

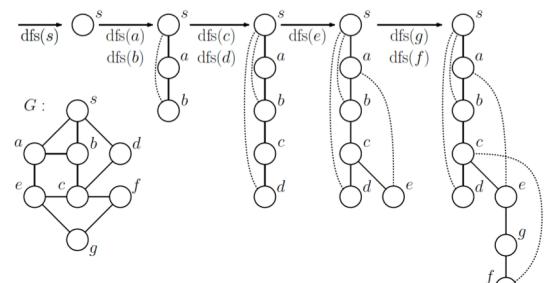
DFS(u) {
    mark[u] = true
    for each (v in Adj[u])
        if (!mark[v])
            DFS(v)
}
}

```

- mark array used to track seen vertices
- The wrapper is only needed if not all vertices are reachable from source

1

DFS on Graph



16

Running Time

```

DFS(G) {
    set mark to all false
    for each (v in V) {
        if (!mark(v))
            DFS(v)
    }
}

DFS(u) {
    mark[u] = true
    for each (v in Adj[u]) {
        if (!mark[v])
            DFS(v)
    }
}

```

- $|V| = n, |E| = m$
- Initialization $O(n)$
- DFS is called once per vertex (in wrapper or recursively)
- $T(n, m) = n + \sum_{u \in V} (\deg(u) + 1)$
- $= n + \sum_{u \in V} \deg(u) + \sum_{u \in V} 1$
- $= 2n + \sum_{u \in V} \deg(u)$
- $= 2n + 2m$
- $O(n + m)$

1

DFS Additional Record Keeping

- start times array: s
- finish times array: f
- predecessors array: $pred$

```

DFSG(G)  {
  time = 0
  for each (u in V) {
    mark[u] = unseen
  }
  for each (u in V) {
    if (mark[u] == unseen)
      DFS(u)
  }
}

```

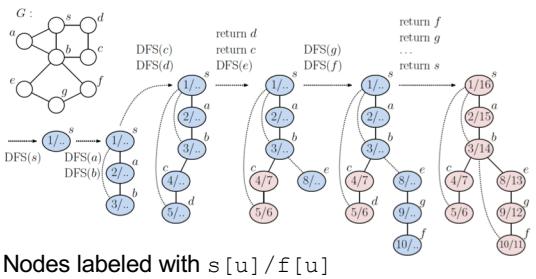
```

DFS(u) {
    mark[u] = seen
    s[u] = time++
    for each (v in Adj[u]) {
        if (mark[v] == unseen) {
            pred[v] = u
            DFS(v)
        }
    }
    mark[u] = finished
    f[u] = time++
}

```

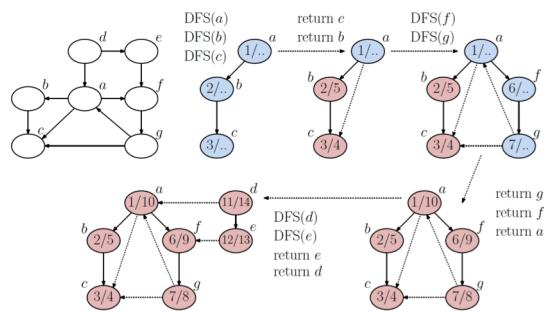
18

DFS on Undirected Graph

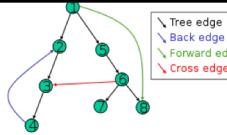


19

DFS on Directed Graph



DFS Edge Classification



- If v is visited for the first time as we traverse (u, v) , then (u, v) is a tree edge
- else, v has already been visited
 - if v is an ancestor of u , (u, v) is a back edge
 - if v is a descendant of u , then (u, v) is a forward edge
 - if v is neither, then (u, v) is a cross edge

21

CS 340 - Analysis of Algorithms Greedy Algorithms – Interval Scheduling

Dianna Xu

Optimization Problems

- Arise naturally in many applications of science and engineering
- Problem is subject to various constraints
- Want to minimize cost or maximize objective
- Efficient solutions are not given
- Optimality also a concern

23

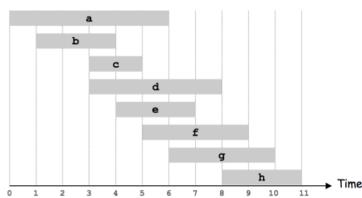
Greedy Algorithms

- An algorithm that builds up a solution by “myopically” selecting the best choice at the moment
- Greedy algorithms don’t always produce optimal solutions
- Even when they don’t, they provide fast heuristics that gives us good approximations

24

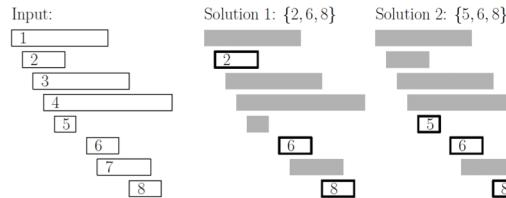
Interval Scheduling

- Given a set R of n activities with start-finish times $[s_i, f_i], 1 \leq i \leq n$, determine a maximum subset of R consisting of compatible requests



25

Example



(a)

(b)

(c)

26

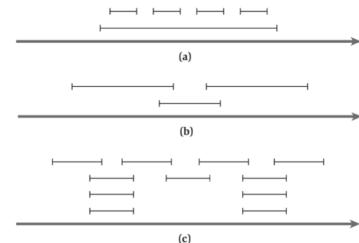
Greedy Design Basics

- For each request, use a simple rule to decide if it should be accepted.
- Once accepted, it can not be rescinded (greedy does not backtrack).
- What criteria should we use here?

27

Approaches

- Earliest Activity First
- Shortest Activity First
- Lowest Conflict Activity First



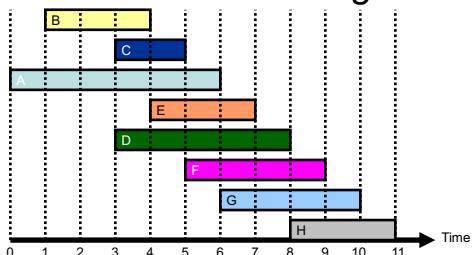
28

Earliest Finish First

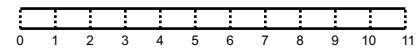
```
greedySchedule(R) { // R the set of requests
  A = empty // A the set of scheduled activities
  while (R is nonempty) {
    r = request in R with the smallest finish time
    append r to A
    delete from R all requests that overlap r
  }
  return A
}
```

29

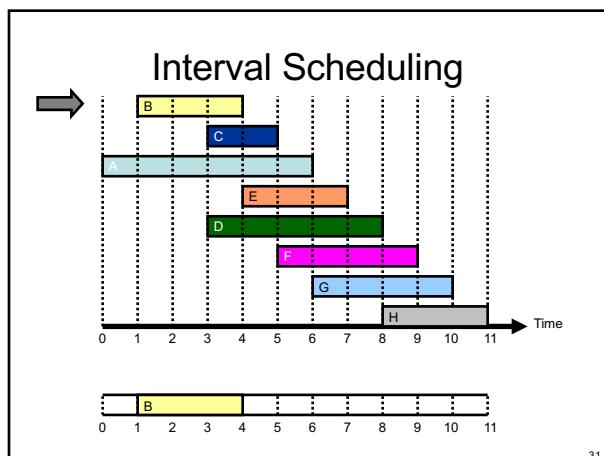
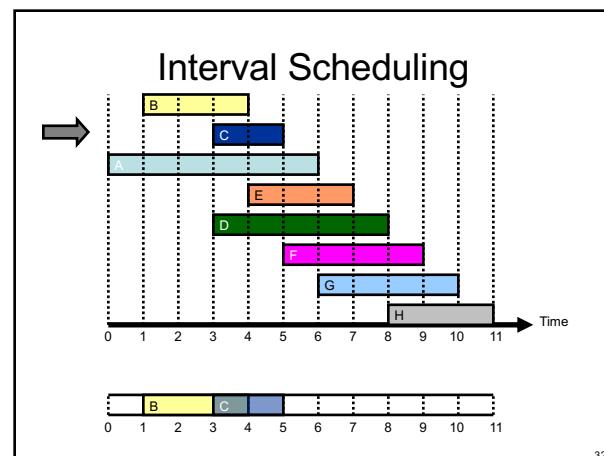
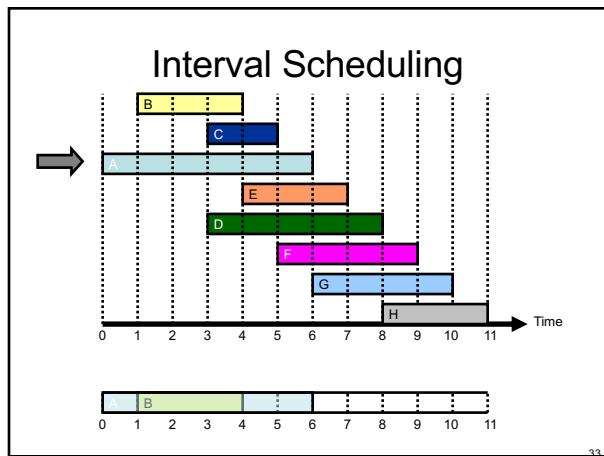
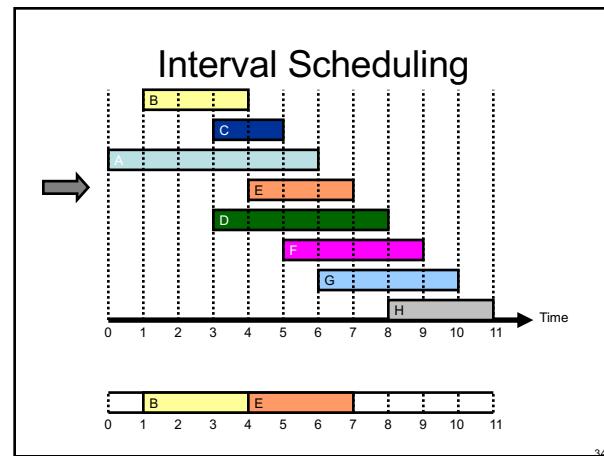
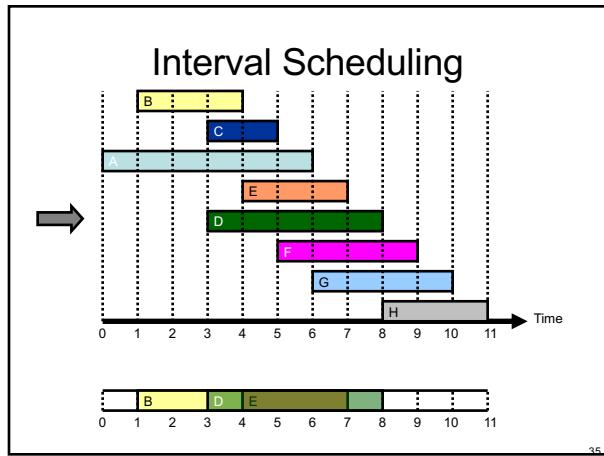
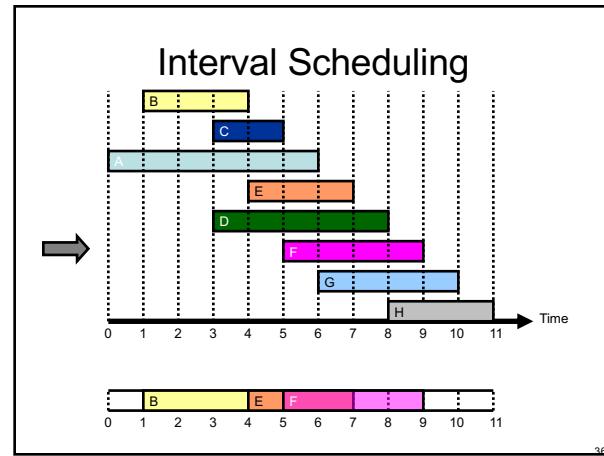
Interval Scheduling

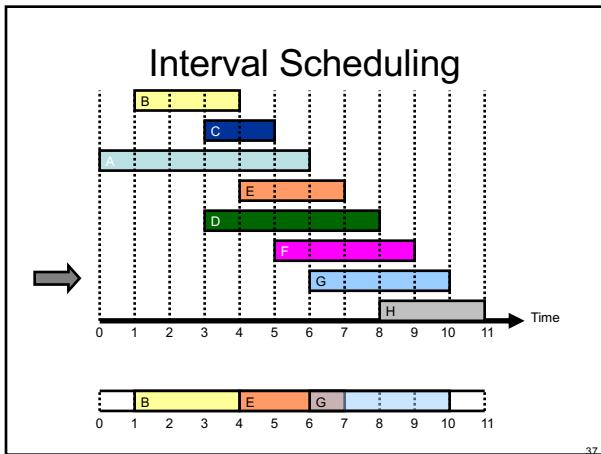
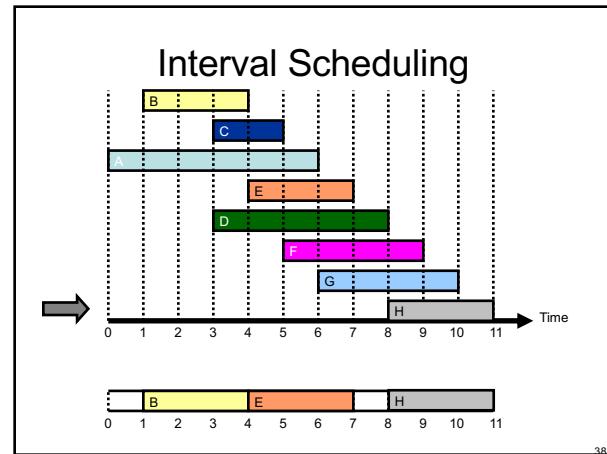


Fill in the schedule:



30





Earliest Finish First

```
greedySchedule(R) { // R the set of requests
  A = empty      // A the set of scheduled activities
  sort R by finish times
  prevA = null    // last picked activity
  for (each r in R) {
    if (r doesn't conflict with prevA) {
      append r to A
      prevA = r
    }
  }
  return A
}
```

39

Time Analysis

- $|R| = n$
- Naïve implementation
 - while runs $O(n)$
 - findmin, delete overlap each runs $O(n)$
 - $O(n^2)$
- Sort R by finish time first – $O(n \log n)$
 - while changes to for and runs $O(n)$
 - findmin/delete not needed any more
 - $O(n \log n + n) = O(n \log n)$

40

Correctness

- Valid schedule?
- Optimality?
 - maximizes the solution cardinality, i.e. does it schedule the max number of activities?

41

Proof

- Consider any optimal schedule O and let G be the schedule produced by greedy
- If $O = G$ then we are done
- Otherwise, show we can construct a schedule O' that is more similar to G than it is to O , and keep going so that O converges to G .

42

Proof

- Order the activities in the schedules in increasing finishing times.
- Let $O = \langle x_1, x_2, \dots, x_k \rangle$
- Since O and G differ, we have:
 - $O = \langle x_1, \dots, x_{j-1}, x_j, \dots \rangle$
 - $G = \langle x_1, \dots, x_{j-1}, g_j, \dots \rangle$, where $g_j \neq x_j$
 - Note $k \geq j$ (why?)
 - g_j has earlier finish time than x_j
 - replace x_j with g_j in O , resulting in O'

43

Proof

$$\begin{array}{c} O : [x_1] [x_2] \dots [x_{j-1}] [x_j] [x_{j+1}] [x_{j+2}] \dots \\ G : [x_1] [x_2] \dots [x_{j-1}] [g_j] [g_{j+1}] [g_{j+2}] \dots \\ \hline O' : [x_1] [x_2] \dots [x_{j-1}] [g_j] [x_{j+1}] [x_{j+2}] \dots \end{array}$$

- O' is valid
 - g_j does not conflict with earlier activities
 - or later activities
- and optimal (same cardinality)
- Keep doing it until O' becomes G
- What if $|O| > |G|$?

44

Lemma: Greedy Has Earlier Finish Times

- Given $O = \langle [o_{s_1}, o_{f_1}], \dots, [o_{s_i}, o_{f_i}], \dots \rangle$ and $G = \langle [g_{s_1}, g_{f_1}], \dots, [g_{s_i}, g_{f_i}], \dots \rangle$,
- Claim: $g_{f_i} \leq o_{f_i} \forall i$
- Proof by induction
 - base case $i = 1$: by greedy construction
 - inductive hypothesis: $g_{f_{i-1}} \leq o_{f_{i-1}}$
 - inductive step: $o_{s_i} > g_{f_{i-1}}$, thus job o_i has no conflict with $g_{i-1} \rightarrow o_i$ was in the pool Greedy considered but didn't pick $\rightarrow g_{f_i} \leq o_{f_i}$
- $|O| = |G|$

45