CS 340 - Analysis of Algorithms
Graph Theory Review

Dianna Xu

Graph

* A gaph G=(,E)
represents a set of
vertices V and a set of

edges E. %
e« E may consist of

unordered or ordered

pairs of vertices and the
resulting graph is @Q
undirected/directed.

+ Edges and vertices may

have weights

Terminology

* Given an edge e = (u, v), u and v are
endpoints of e and e is incident on u and
v. u and v are adjacent.

* The degree of a vertex deg(v)is the
number of incident edges on v in an
undirected graph, or the number of
outgoing edges in a directed graph.

. |V| =n

. |E| =m

Basic Graph Size Estimates

* Undirected graph + Directed graph

Terminology

* A path in a graph is a sequence of vertices
(v, ..., V) such that (v;_,,v;) is an edge
fori=1,..,k

* The length of a path is the number of
edges, k.

* A cycle is a path containing at least one
edge and for which v, = v,

* A cycle is simple if its edges and vertices
(except for v, and v,,) are distinct.

5

|E|=0Sm§(n) [El=0<m<nn-1)
2 — 0(n2
nn—1) =0(n%)
= =0
Z indeg(v) =m
Y. deg(v) = 2m o
vEV outdeg(v) =m
Terminology

* An acyclic graph contains no simple cycles

» An acyclic connected graph is a tree

* The vertices of a bipartite graph can be
partitioned into two disjoint subsets, V/; and
V, such that all edges have one endpoint
in V; and the other one in V,

e WK

(Free) Tree Bipartite graph 6

2/3/26

Representation

» Adjacency matrix: An nxn matrix defined
forl <v,w<n:Ali,jl=1if (w,v) EE

* Adjacency list: An array of pointers where
for 1<v<n, Adj[v] points to a list
containing the vertices that are adjacent to

Undirected Graphs

» Adjacency matrix: store the edges twice
» Adjacency list: cross-links

w o~

0RO
o‘o :

Adjacency matrix

1
(
1{0]0f0
1
1

Adjacency list (with crosslinks)

2 3
. 1111
©)
2101011
oéo 3101110
Adjacency matrix Adjacency list ,
(1)
Graph of e
(2) (3) (4
Traversals: BFS e B
1T N
(9) (10 (11 12

* Given a graph G = (V, E)r, 7breadth-fiirst
search starts at some vertex s and visits
vertices reachable from s in layers.

» Define the distance between a vertex v
and s to be the minimum number of edges
on a path from s to v.

» BFS visits the vertices in increasing order
of distance.

9

BFS OO,

BFS(G, s) {
set mark to all false
mark[s] = true, Q = {s}
while (Q is not empty) {

u = dequeue of Q

for each (v in Adj[u]) {

if (!mark([v]){
mark[v]=true
append v to Q

» mark array (booleans,

indexed by vertices)
tracks which vertices
have been visited

« Qis aFIFO queue
« Q contains the frontier

(discovered but
unvisited) vertices

BFS on a Graph

BFS Time Analysis

BFS(G, s) {
set mark to all false
mark[s] = true, Q = {s}
while (Q is not empty) {

u = dequeue of Q
for each (v in Adj[u]) {
if (!mark([v]){
mark[v]=true
append v to Q

VI =nlEl =m
Initialization requires 0(n)

« Traversal loop

— while: we never visit a vertex
twice

— for each: depends on the
degree of vertex

T(n,m) =n+X,cy(deg(u) +1)
=n+ Ly deg() + Tyey 1
=n+Y,cpdeg(u) +n

=2n+ Xyey deg(w)

=2n+2m

o(n+m)

2/3/26

BFS with More Record Keeping

BFS (G, s) {
for each (u in V) {
mark[u] = false, d[u] = infinity, pred[u] = null
}
mark[s] = true, d[s] =0, Q = {s}
while (Q is not empty) {

u = dequeue of Q
for each (v in Adj[ul]) {
if (!mark([v]){

mark[v] = true
dfv] = d[ul+1
pred[v] = u

append v to Q

Graph -

2) @ &
Traversals: DFS & ® an\\i;;,
4/) 19 11

* Given a graph G = (V,E), depth-first
traversal strives for maximal depth and
backtracks only when necessary.

» Recursive algorithm

DFS

DEFSG(G) {
set mark to all false

for each (v in V) {
if (!mark(v))
DFS (v)

mark array used to

} track seen vertices

! * The wrapper is only
DFS (u) { .

mark[u] = true needed if not all

vertices are reachable
from source

for each (v in Adj[ul]) {
if (!mark([v]){
DFS (v)
}

DFS on Graph

O-
dfs(s) dfs(a) >
dfs(b)

Running Time

DFSG (G) { o [Vl=n|E|=m

set mark to all false FPRT .
i « Initialization O(n)
for each (v in V) {

if (!mark(v)) « DFS is called once per
DFS (v) vertex (in wrapper or
} recursively)
[}>Fsm) . e T(n,m)=n+
mark[u] = true ZuEV(dEg(u) * 1)
for each (v in Adj[ul]) { e =n+ ZueV deg(u) + ZuEV 1
if (tmark(v]){ o =2n+ Y,y degn)
DFS (v)
) e =2n+2m
} e O(n+m)

DFS Additional Record Keeping

« starttimes array: s DES () {
o k[u] =
« finish times array: £ markinl - seen
s[u] = time++
. predecessors array: pred for each (v in Adj[ul) {

if (mark[v] == unseen) {
DFSG(G) {
pred[v] =u
time = 0
DFS (v)
for each (u in V) {)
mark[u] = unseen)
} PR
for each (u in V) { mark[u] = finished
flul = time++
if (mark[u] == unseen))
DFS (u)

2/3/26

DFS on Undirected Graph

Nodes labeled with s [u] /£ [u]

DFS on Directed Graph

DFS(a)
DFS(b)
DFS(c)

return g

DFS(d)
\ DFS(e)
return €
return d

[return a

20

return f

\ Tree edge
\ Back edge
\ Forward ed
\ Cross edge

DFS Edge
Classification

« If v is visited for the first time as we
traverse (u, v), then (u, v) is a tree edge

* else, v has already been visited
—if v is an ancestor of u, (u, v) is a back edge

—if v is a descendent of u, then (u,v) is a
forward edge

—if v is neither, then (u, v) is a cross edge

CS 340 - Analysis of Algorithms
Greedy Algorithms — Interval
Scheduling

Dianna Xu

Optimization Problems

* Arise naturally in many applications of
science and engineering

* Problem is subject to various constraints

* Want to minimize cost or maximize
objective

« Efficient solutions are not a given

+ Optimality also a concern

Greedy Algorithms

* An algorithm that builds up a solution by
“‘myopically” selecting the best choice at
the moment

* Greedy algorithms don’t always produce
optimal solutions

« Even when they don’t, they provide fast
heuristics that gives us good
approximations

24

2/3/26

Interval Scheduling

* Given a set R of n activities with start-
finish times [s;, f;],1 <i < n, determine a
maximum subset of R consisting of
compatible requests

Time

Greedy Design Basics

* For each request, use a simple rule to
decide if it should be accepted.

* Once accepted, it can not be rescinded
(greedy does not backtrack).

« What criteria should we use here?

Example
Input: Solution 1: {2,6,8} Solution 2: {5, 6,8}
(a) (b) (©)
Approaches

* Earliest S ———
Activity First @

* Shortest —
Activity First ®

* Lowest P
Conflict A _—
Activity First ©

28

Earliest Finish First

greedySchedule (R) { // R the set of requests

A = empty // A the set of scheduled activities

while (R is nonempty) {
r = request in R with the smallest finish time
append r to A
delete from R all requests that overlap r

}

return A

}

Interval Scheduling
E 1] ¢ P

Time
»

2/3/26

Interval Scheduling

B g |

B

ntervaI‘ScheduI‘ing

Time
»

B

Time
0 1 2 3 4 5 6 7 8 9 10 1"
I8] :
0 1 2 3 4 5 6 7 8 9 10 1"
Interval Scheduling
B A HE
G]
L Time
0 1 2 3 4 5 6 7 8 9 10 1
L_Is |]
1 2 3 4 5 6 7 8 9 10 1
Interval Scheduling
B A P
s]
L Time

B

IntervaI‘ScheduI‘ing

2/3/26

IntervaI‘ScheduI‘ing

B H | : :
E
.
=) S]
Lo P Time
0 1 2 3 4 5 6 7 8 9 10 1
B |5 le |]
0 1 2 3 4 5 6 8 9 10 1

IntervaI‘ScheduI‘ing

B A |

=) A e
>

a8

Earliest Finish First

greedySchedule (R) { // R the set of requests
A = empty // A the set of scheduled activities
sort R by finish times
prevA = null // last picked activity
for (each r in R) {
if (r doesn’t conflict with preva) {
append r to A
prevA = r
}
}

return A

Time Analysis

*IRl=n

» Naive implementation
—while runs O(n)
- findmin, delete overlap each runs O(n)
-0(m?

 Sort R by finish time first — 0 (nlogn)
-while changes to for and runs 0(n)
- findmin/delete not needed any more
- O(nlogn +n) = O(nlogn)

40

Correctness

 Valid schedule?
+ Optimality?
— maximizes the solution cardinality, i.e. does it
schedule the max number of activities?

Proof

» Consider any optimal schedule 0 and let G
be the schedule produced by greedy

e If 0 = G then we are done

* Otherwise, show we can construct a
schedule 0’ that is more similar to G than it
is to 0, and keep going so that O
converges to G.

42

2/3/26

Proof

* Order the activities in the schedules in
increasing finishing times.
o Let 0 = (xq, x5, ..., Xi)
« Since 0 and ¢ differ, we have:
-0= (xl, s Xj—1, Xj,)
-G = (xl, e Xj-1, 9), where gj # xj
—Note k > j (why?)
- gj has earlier finish time than x;
—replace x; with g; in 0, resulting in 0’ 4

O[T J[@2 J...[F= J[F JF] F42 ...

Proof G: =2]...[T-] 90 e .
o EFE . FEOEE F).
0'is valid

- g; does not conflict with earlier activities
—or later activities

and optimal (same cardinality)

Keep doing it until 0’ becomes G
What if |0| > |G]|?

44

Lemma: Greedy Has Earlier
Finish Times

* Given 0 =([os,,0p], . [05,0f,],) and G =
<[gsl'gf1]‘ e [051' ofi]’)’
+ Claim: g7, < Oy, Vi

Proof by induction

— base case i = 1: by greedy construction

— inductive hypothesis: gf, | < O, |

— inductive step: os, > g5, ,,thus job o; has no conflict
with g;_1 = o; was in the pool Greedy considered but
didn't pick — g¢, < of,

0] =G| 45

2/3/26

