

CS 340 - Analysis of Algorithms Greedy Algorithms – Dijkstra's

Dianna Xu

Dijkstra's Algorithm

Definitions

- Given a directed graph $G = (V, E)$
- Each edge $(u, v) \in E$ is associated with an edge weight $w(u, v)$
- The *length* of a path is the sum of weights along the edges of the path
- The *distance* between two vertices u and v is the minimum length of any path between the vertices, denoted $\delta(u, v)$

3

Shortest Path Variations

- Single-source, single-sink
- Collection of source-sink pairs
- Single-source to all
- All-pairs
- Typically assume non-sparse graphs, and connected

4

Single-Source Shortest Path

- Given a directed graph $G = (V, E)$ with edge weights and a source vertex $s \in V$, determine the distance $\delta(s, v), \forall v \in V$
- Negative weights? – Bellman-Ford
- Dijkstra's – simple greedy algorithm that assumes nonnegative weights

5

Description

- Maintain an estimate of the shortest path for each vertex, $d[v]$, from s
- $d[v]$ stores the length of the shortest path from s to v that the algorithm currently knows of
- Initially, $d[s] = 0$ and $d[v] = \infty, v \neq s$
- The algorithm updates $d[v]$ as it processes more and more vertices – relaxation

6

Relaxation

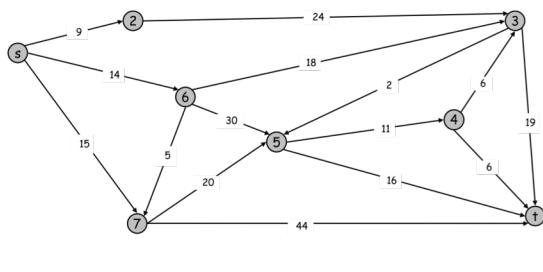
- Consider an edge (u, v) .
- We have current values for $d[u]$ and $d[v]$
- $d[v]$ should be the smaller of $d[u] + w(u, v)$, or $d[v]$ - do we want to go through u ?

```
relax(u, v) {
    if (d[u]+w(u, v)< d[v]) {
        d[v] = d[u] + w(u, v)
        pred[v] = u
    }
}
```

Dijkstra's

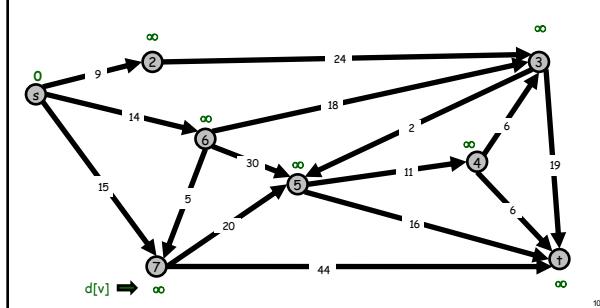
- A subset of vertices $S \subseteq V$, for which we know the true distance, i.e. $d[v] = \delta(s, v)$
- Initially, $S = \{\}$
- $d[s] = 0, d[v] = \infty, v \neq s$
- Select vertices from $V \setminus S$ to add to S (vertices stored in priority queue)
- Each time select the vertex $u \in V \setminus S$ for which $d[u]$ is minimum and update the d values of u 's neighbors

Input



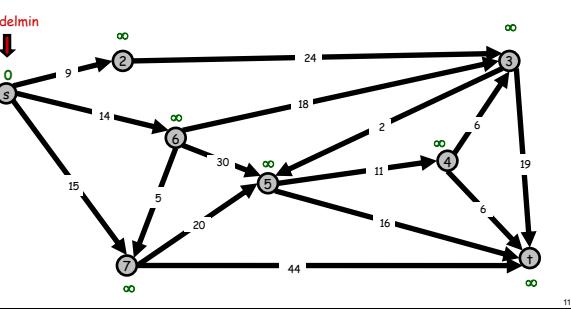
Dijkstra's Shortest Path Algorithm

$S = \{\}$
 $V = \{s, 2, 3, 4, 5, 6, 7, t\}$



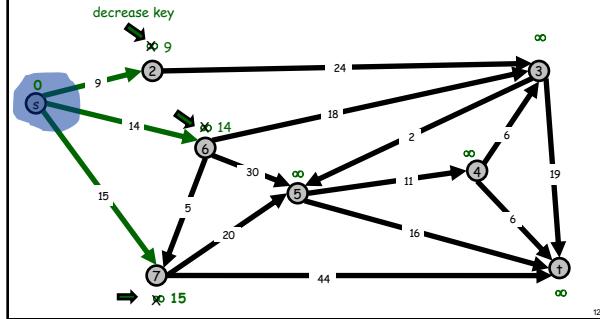
Dijkstra's Shortest Path Algorithm

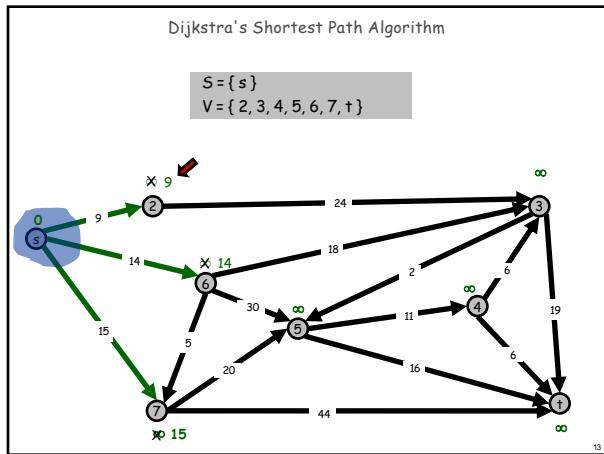
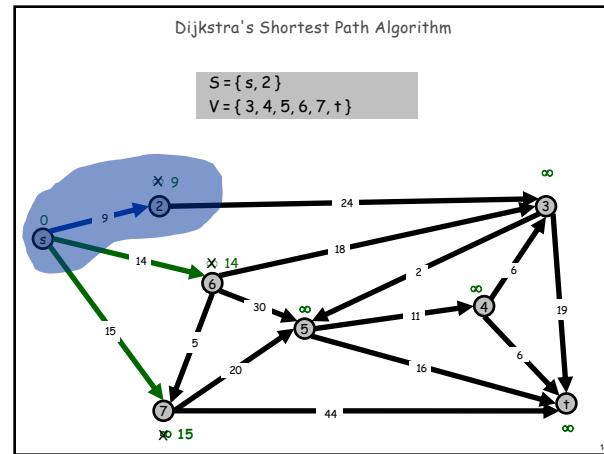
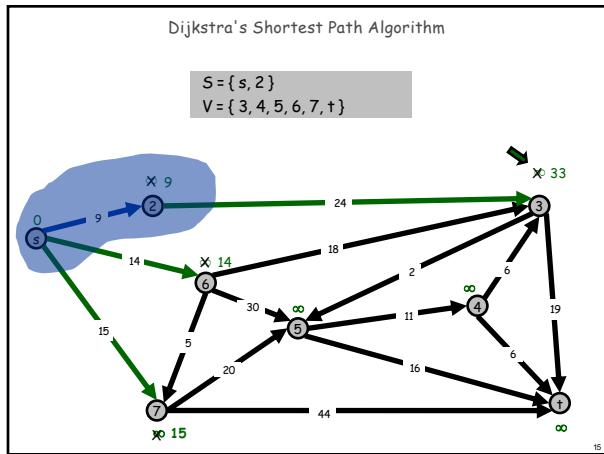
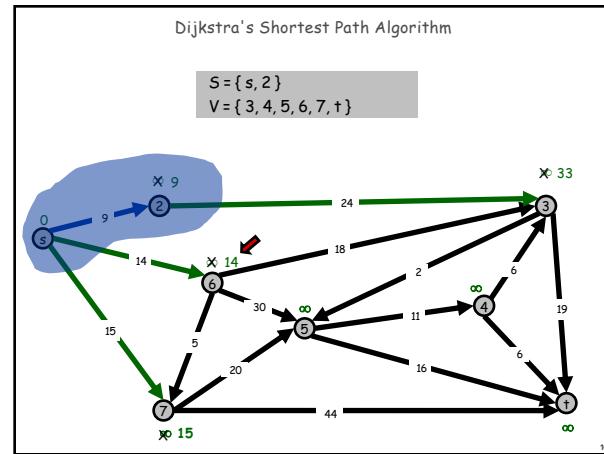
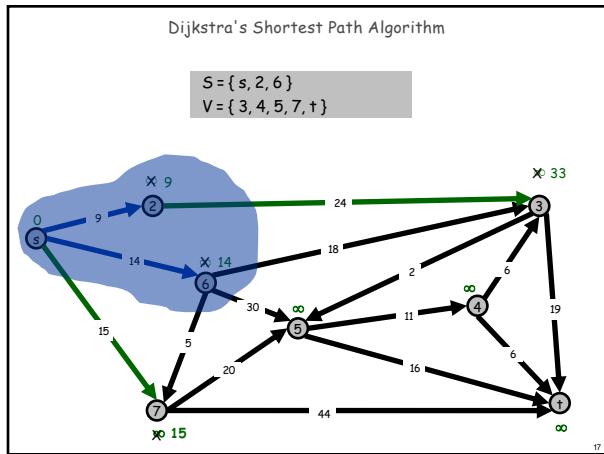
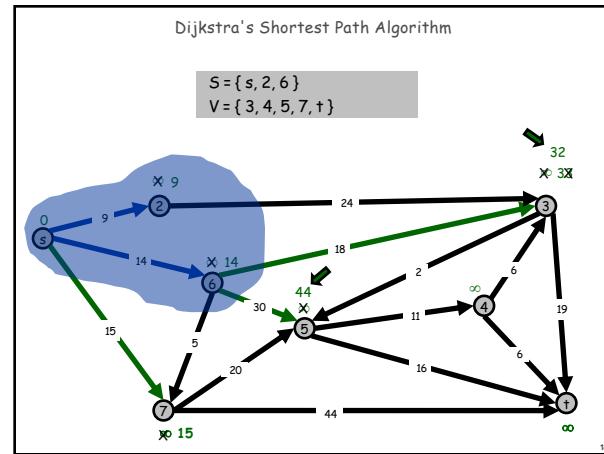
$S = \{\}$
 $V = \{s, 2, 3, 4, 5, 6, 7, t\}$



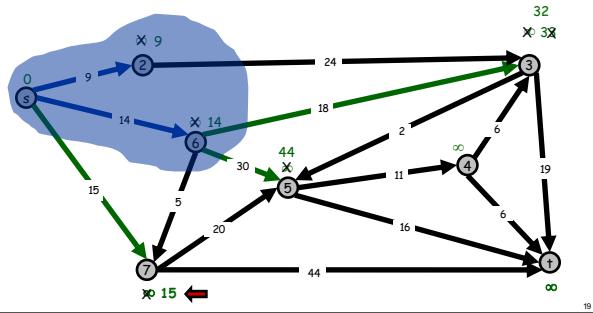
Dijkstra's Shortest Path Algorithm

$S = \{s\}$
 $V = \{2, 3, 4, 5, 6, 7, t\}$

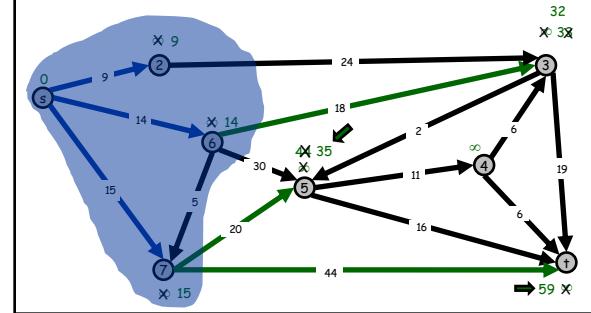




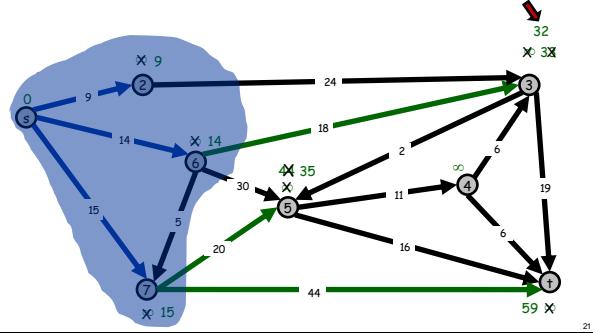
Dijkstra's Shortest Path Algorithm

 $S = \{s, 2, 6\}$
 $V = \{3, 4, 5, 7, t\}$


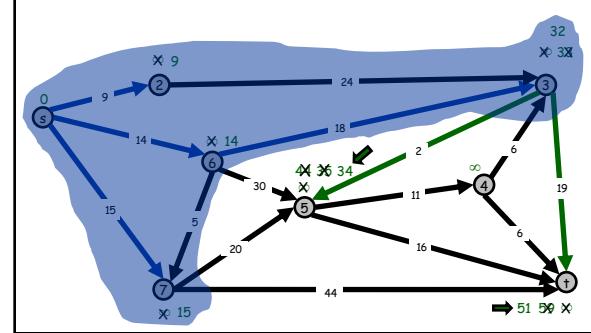
Dijkstra's Shortest Path Algorithm

 $S = \{s, 2, 6, 7\}$
 $V = \{3, 4, 5, t\}$


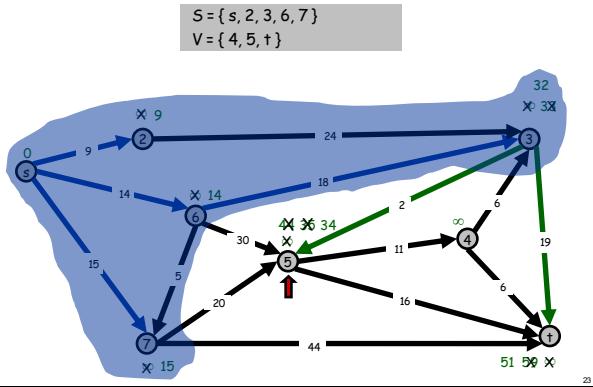
Dijkstra's Shortest Path Algorithm

 $S = \{s, 2, 6, 7\}$
 $V = \{3, 4, 5, t\}$


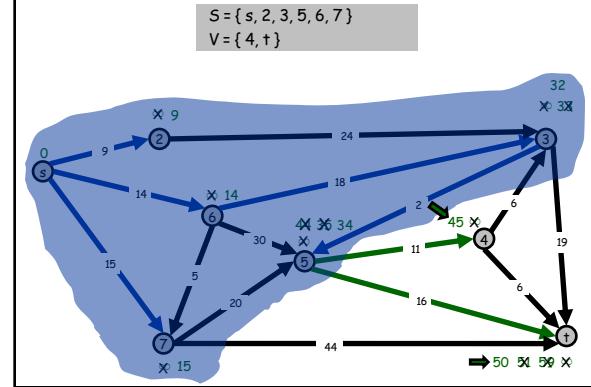
Dijkstra's Shortest Path Algorithm

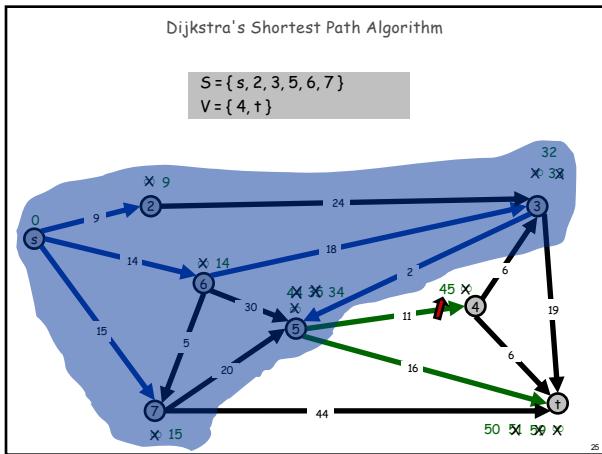
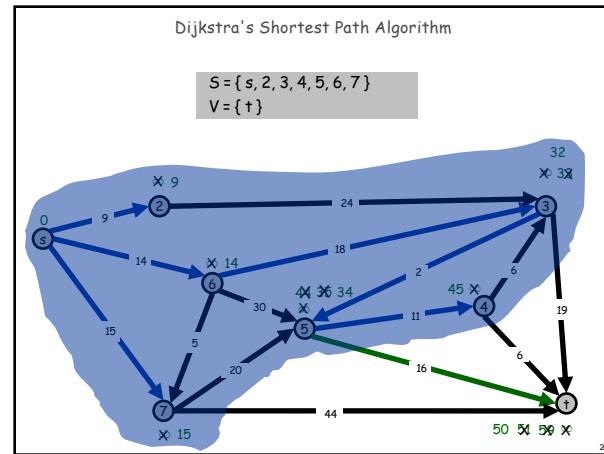
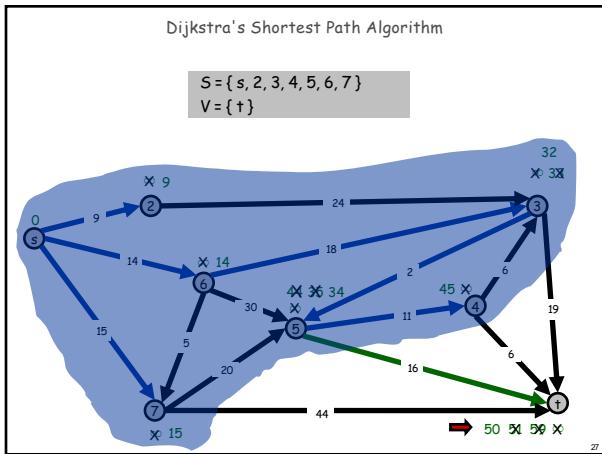
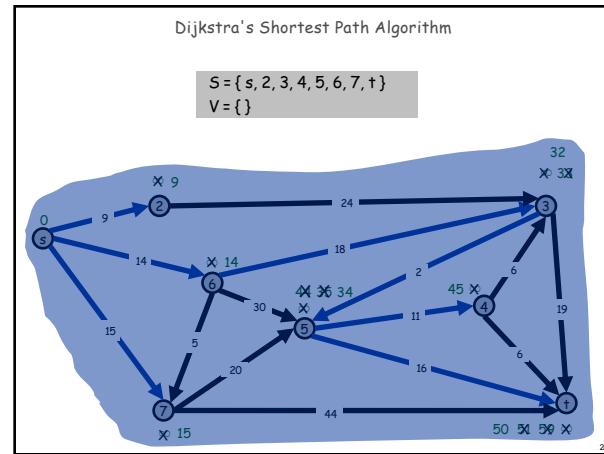
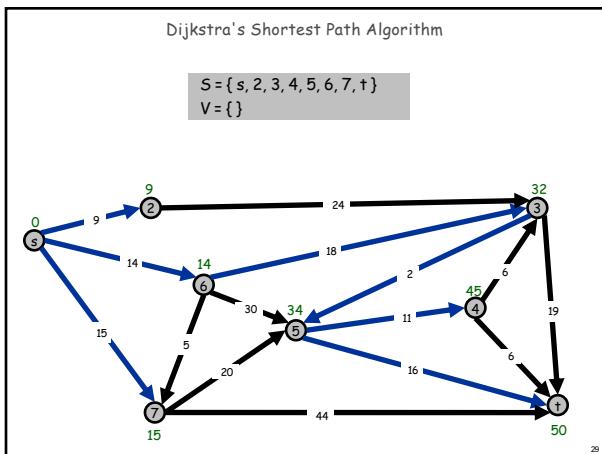
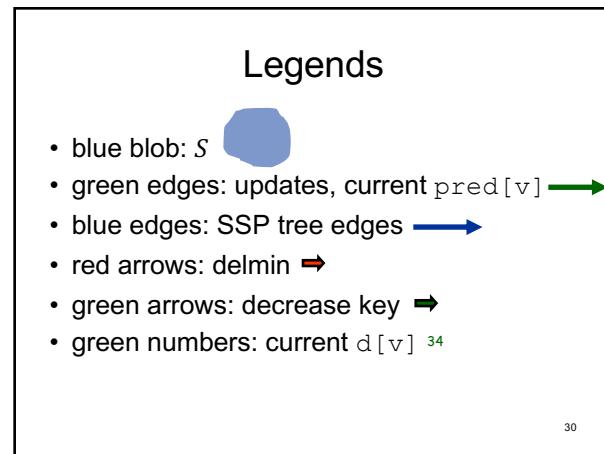
 $S = \{s, 2, 3, 6, 7\}$
 $V = \{4, 5, t\}$


Dijkstra's Shortest Path Algorithm

 $S = \{s, 2, 3, 6, 7\}$
 $V = \{4, 5, t\}$


Dijkstra's Shortest Path Algorithm

 $S = \{s, 2, 3, 5, 6, 7\}$
 $V = \{4, t\}$




Dijkstra's

```

dijkstra(G, s){
    for each (u in V) { d[u] = infinity }
    d[s] = 0 pred[s] = null
    Q = priority queue of all vertices u keyed by d[u]
    while (Q is not empty) {
        u = extractMin from Q
        for each (v in Adj[u]) {
            if (d[u] + w(u, v) < d[v]) {
                d[v] = d[u] + w(u, v)
                decrease v's key value in Q to d[v]
                pred[v] = u //keeps track of the tree
            }
        }
    }
}

```

31

Time Analysis

- Vertices $V \setminus S$ are stored in a priority queue via key value $d[u]$
- Priority queue operations (binary heap)
 - build $O(n)$
 - delmin (extract min) $\rightarrow O(\log n)$
 - decrease key $\rightarrow O(\log n)$
- $T(n, m) = n + n + \sum_{u \in V} (\log n + \deg(u) \cdot \log n)$
- $= 2n + \log n \sum_{u \in V} (1 + \deg(u))$
- $= 2n + \log n (n + 2m)$
- $= 2n + n \log n + 2m \log n = O(m \log n)$

32

Data Structures and Cost

	insert	search	delete	findMin	deleteMin	changeKey
Ordered Array	n	$\log n$	1^*	1	1^*	n
Ordered List	n	n	1	1	1	n
Unordered Array	1^*	n	1^*	n	n	1
Unordered List	1	n	1	n	n	n
BST	$\log n$	$\log n$				
Binary Heap	$\log n$	n	$\log n$	1	$\log n$	$\log n$

33

Data Structures and Run Times

Dijkstra's PQ Op	Naïve	Array	Binary Heap	d-way Heap	Fibonacci Heap
Insert	-	1	$\log n$	$d\log n$	1
ExtractMin	m	n	$\log n$	$d\log_d n$	$\log n$
ChangeKey	-	1	$\log n$	$d\log_d n$	1
IsEmpty	n	1	1	1	1
Total	mn	n^2	$m\log n$	$m\log_{m/n} n$	$m + n\log n$

- $m = 10^{10}$ edges connecting $n = 10^9$ vertices
- Difference of 6 minutes and 3000 years

34

Termination

- Loops
 - outer while – V is finite
 - inner for – G is finite

35

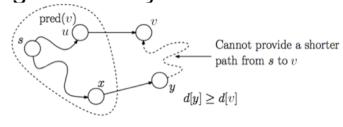
Correctness

- Need to show that $d[v] = \delta(s, v), \forall v \in V$
- Invariant: $d[v] = \delta(s, v), \forall v \in S$
- Proof by induction on $|S|$
 - Base case: $|S| = 1, \delta(s, s) = 0$
 - Assume true for $|S| = k > 1$
 - $|S| = k + 1$

36

Proof

- Let v be the next vertex added to S , along with (u, v)
- $d[v] = \delta(s, u) + w(u, v)$
- Consider any other $s - v$ path P . let (x, y) be the first edge taken by P where $x \in S$ and $y \in V \setminus S$
- $d[x] = \delta(s, x)$
- $d[y] \geq d[v]$
- $\text{len}(P) > \delta(s, x) + w(x, y) = d[y] \geq d[v]$



37