CS 340 - Analysis of Algorithms
Greedy Algorithms — Dijkstra’s

Dianna Xu

Dijkstra's Algorithm

Definitions

Given a directed graph G = (V,E)

Each edge (u,v) € E is associated with an
edge weight w(u, v)

The length of a path is the sum of weights
along the edges of the path

The distance between two vertices u and
v is the minimum length of any path
between the vertices, denoted 6§ (u, v)

Shortest Path Variations

« Single-source, single-sink

* Collection of source-sink pairs
» Single-source to all

* All-pairs

» Typically assume non-sparse graphs, and
connected

Single-Source Shortest Path

Given a directed graph G = (V,E) with
edge weights and a source vertex s € I/,
determine the distance §(s,v),Vv €V
Negative weights? — Bellman-Ford
Dijkstra’s — simple greedy algorithm that
assumes nonnegative weights

Description

* Maintain an estimate of the shortest path
for each vertex, d[v], from s

» d[v] stores the length of the shortest path
from s to v that the algorithm currently
knows of

* Initially, d[s] = 0and d[v] = o0, v # s
* The algorithm wupdates d[v] as it

processes more and more vertices -
relaxation

6

2/4/26

Relaxation

» Consider an edge (u, v).
» We have current values for d[u] and d[v]

e d[v] should be the smaller of d[u]+

w(u,v), or d[v] - do we want to go through
u?

relax (u, v){

Dijkstra’s
* A subset of vertices S <V, for which we
know the true distance, i.e. d[v] = §(s,v)
Initially, S = {3}
d[s] =0,d[v] = o,v#s
Select vertices from V\S to add to S
(vertices stored in priority queue)

» Each time select the vertex u € V\Sfor
which d[u] is minimum and update the d
values of u’s neighbors 6

if (dlul+w(u, v)<d[v]) {
dlv] = d[u] + w(u, v)
_ . u predlt] u
pred(vl =u Q" relax(u, v) GFen”
’
) © @) © ©) 7
d[v] < dlu] + w(u. v)

Dijkstra's Shortest Path Algorithm

s={}
V={s,2,3,4,56,71}

0
oo
>0 *
9
18
14
hd 2 6
)
30 © 1 19
15
? 6
20 16
Z 44
divl = o ©

Dijkstra's Shortest Path Algorithm

s={}
V={s,23,4,56,7,1}

delmin ©
l oo
O 2
0 9
18
14
= 2 6
©
30
© n 19
15
5
6
20 16
Z 24
© ©

Dijkstra's Shortest Path Algorithm

S={s}
V={2,3,4,56,7,1}

decrease key

S, o
'(2> 24
9
18
1 % 14) h
0
30 © 1 19
15
? 6
20 16
7, 44
= 15 @
»

2/4/26

Dijkstra's Shortest Path Algorithm

S={s}
V={2,3,4,56,7,1t)}

20 16

Z 44
% 15 ©

Dijkstra's Shortest Path Algorithm

S={s,2}
V={3,4,56,71}

~
o

20 16

14
15

X 3
24
18
X 14)
3o:: wE n—'(1
5
6.
6

Dijkstra's Shortest Path Algorithm

S={s,2}
V={3,4,56,7,t}

3

20 1

Ay

» 15

9
©
5

14
15

X 33
24
4 "
X 14 .
30 o] 1 1
5 '\
6

Dijkstra's Shortest Path Algorithm

S={s,2}
V={3,4,5,67t}

6
©
6
20 1

9
3 15 ©

15

Dijkstra's Shortest Path Algorithm

S={s,2,6}
V={3,4,571}

X 33
2
18
2 6
o0
0 d 1 L
5
6
® © %
Z 44

9
3 15 ©
7

15

Dijkstra's Shortest Path Algorithm

S={s,2,6}
V={3,4,571}

)|

32

X 3%
24
18
4 2 ¢
44 S
30 % 1 19
5
6
® © %
7, 44
o0
15

» 15

2/4/26

Dijkstra's Shortest Path Algorithm

5={s,2,6}
V={3,4,5,7,t}
32
% 3%
2 6
0
M 19
6
20 16
Z 44
% 15 4m @

Dijkstra's Shortest Path Algorithm

5={s,2,6,7}
V={3,4,51t}

1

=59 X

Dijkstra's Shortest Path Algorithm

5={s5,2,6,7}
V={3,4,51}

Dijkstra's Shortest Path Algorithm

5={s,2,3,6,7}
V={451}

Dijkstra's Shortest Path Algorithm

5={s,2,3,6,7}
V={4,51}

Dijkstra's Shortest Path Algorithm

5={s,2,3,5,6,7}
v={4,1}

2/4/26

Dijkstra's Shortest Path Algorithm

5={s,2,3,5,6,7}
V={41+t}

Dijkstra's Shortest Path Algorithm

5={s,2,3,4,5,6,7}
v={t}

Dijkstra's Shortest Path Algorithm

5={s,2,3,4,5,6,7}
V={t}

=) 50 3 50 X%

Dijkstra's Shortest Path Algorithm

5={s,2,3,4,5,6,7,1}
v={}

Dijkstra's Shortest Path Algorithm

5={s,2,3,4,5,6,7,t}

v={}
9 32
»o 2
0 9
18
4 14 . 4
4
30 34 1 19
15
5
6

® © %
7 44
15 50

»

Legends

* blue blob: S .

» green edges: updates, current pred [v] m=——p
* blue edges: SSP tree edges =——p

* red arrows: delmin =

* green arrows: decrease key =

» green numbers: current d [v] 34

2/4/26

Dijkstra’s

dijkstra(G, s){
for each (u in V) { d[u] = infinity }
d[s] = 0 pred[s] = null
Q = priority queue of all vertices u keyed by d[u]
while (Q is not empty) {
u = extractMin from Q
for each (v in Adj[u]) {
if (d[u]l + w(u, v) < d[v]) {
d[v] = d[u] + w(u, v)
decrease v’s key value in Q to d[v]
pred[v] = u //keeps track of the tree
}
}

Time Analysis

» Vertices V\S are stored in a priority queue via
key value d[u]

* Priority queue operations (binary heap)

— build o(n)
— delmin (extract min) = 0(logn)
— decrease key = O(logn)

e T(n,m) =n+n+ Y,y (logn + deg(uw) - logn)
e =2n+lognY ey (1+deg(w))

e =2n+logn(n+2m)

e =2n+nlogn + 2mlogn = O(imlogn)

32

Data Structures and Cost
| linsert| search | delete | findMin | deleteMin | changeKey |
* 1" n

Ordered

Data Structures and Run Times

Dijkstra’s Naive Array Binary d-way Fibonacci
PQ Op Heap Heap [T
= 1

Insert 1 logn dloggn
ExtractMin m n logn dlogqn logn
ChangeKey - 1 logn dlog,n 1
ISEmpty n 1 1 1 1
Total mn n? mlogn mlogymn m+nlogn

e m =10 edges connecting n=10°
vertices

« Difference of 6 minutes and 3000 years

‘Array logn 1 1
Ordered n n 1 1 1 n
List
Unordered 4« n 1 n n 1
Array
Unordered 4 n 1 n n n
List
BST logn logn logn logn logn logn
Binary
Heap logn n logn 1 logn logn
33
Termination
* Loops

—outer while —V is finite
—inner for — G is finite

Correctness

* Need to show that d[v] = §(s,v),Vv €V
* Invariant: d[v] = §(s,v),Vv € S
* Proof by induction on |S]|

—Base case: |S| =1,6(s,5) =0
—Assume true for |S| =k > 1
-|Sl=k+1

2/4/26

Proof

Let v be the next vertex added to S, along
with (u, v)

dlv] =6(s,u) + w(u,v)

» Consider any other s — v path P. let (x,y)
be the first edge taken by P where x €S

and y € V\S vmi(Iy
d[x] =4(s, x) '
dly] = d[v]

e len(P) > 6(s,x) + w(x y) =d[y] = d[v] =

Cannot provide a shorter
pul)l from s to v

dly) > dv]

2/4/26

