CS 340 - Analysis of Algorithms
Greedy Algorithms — Dijkstra’s

Dianna Xu

Dijkstra's Algorithm

Definitions

Given a directed graph G = (V,E)

Each edge (u,v) € E is associated with an
edge weight w(u, v)

The length of a path is the sum of weights
along the edges of the path

The distance between two vertices u and
v is the minimum length of any path
between the vertices, denoted 6§ (u, v)

Shortest Path Variations

« Single-source, single-sink

* Collection of source-sink pairs
» Single-source to all

* All-pairs

» Typically assume non-sparse graphs, and
connected

Single-Source Shortest Path

Given a directed graph G = (V,E) with
edge weights and a source vertex s € I/,
determine the distance §(s,v),Vv €V
Negative weights? — Bellman-Ford
Dijkstra’s — simple greedy algorithm that
assumes nonnegative weights

Description

* Maintain an estimate of the shortest path
for each vertex, d[v], from s

» d[v] stores the length of the shortest path
from s to v that the algorithm currently
knows of

* Initially, d[s] = 0and d[v] = o0, v # s
* The algorithm wupdates d[v] as it

processes more and more vertices -
relaxation
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Relaxation

» Consider an edge (u, v).
» We have current values for d[u] and d[v]

e d[v] should be the smaller of d[u]+

w(u,v), or d[v] - do we want to go through
u?

relax (u, v){

Dijkstra’s
* A subset of vertices S <V, for which we
know the true distance, i.e. d[v] = §(s,v)
Initially, S = {3}
d[s] =0,d[v] = o,v#s
Select vertices from V\S to add to S
(vertices stored in priority queue)

» Each time select the vertex u € V\Sfor
which d[u] is minimum and update the d
values of u’s neighbors 6

if (dlul+w(u, v)<d[v]) {
dlv] = d[u] + w(u, v)
_ . u predlt] u
pred(vl =u Q" relax(u, v) GFen”
’
) © @) © ©) 7
d[v] < dlu] + w(u. v)

Dijkstra's Shortest Path Algorithm

s={}
V={s,2,3,4,56,71}
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Dijkstra's Shortest Path Algorithm
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V={s,23,4,56,7,1}
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Dijkstra's Shortest Path Algorithm

S={s}
V={2,3,4,56,7,1}
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Dijkstra's Shortest Path Algorithm

S={s}
V={2,3,4,56,7,1t)}
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S={s,2}
V={3,4,56,71}
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Dijkstra's Shortest Path Algorithm

S={s,2}
V={3,4,56,7,t}
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Dijkstra's Shortest Path Algorithm

S={s,2}
V={3,4,5,67t}
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Dijkstra's Shortest Path Algorithm

S={s,2,6}
V={3,4,571}
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Dijkstra's Shortest Path Algorithm

S={s,2,6}
V={3,4,571}
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Dijkstra's Shortest Path Algorithm

5={s,2,6}
V={3,4,5,7,t}
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Dijkstra's Shortest Path Algorithm

5={s,2,6,7}
V={3,4,51t}
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5={s5,2,6,7}
V={3,4,51}

Dijkstra's Shortest Path Algorithm

5={s,2,3,6,7}
V={451}

Dijkstra's Shortest Path Algorithm

5={s,2,3,6,7}
V={4,51}

Dijkstra's Shortest Path Algorithm

5={s,2,3,5,6,7}
v={4,1}
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Dijkstra's Shortest Path Algorithm

5={s,2,3,5,6,7}
V={41+t}

Dijkstra's Shortest Path Algorithm

5={s,2,3,4,5,6,7}
v={t}
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5={s,2,3,4,5,6,7,1}
v={}

Dijkstra's Shortest Path Algorithm

5={s,2,3,4,5,6,7,t}
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Legends

* blue blob: S .

» green edges: updates, current pred [v ] m=——p
* blue edges: SSP tree edges =——p

* red arrows: delmin =

* green arrows: decrease key =

» green numbers: current d [v] 34
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Dijkstra’s

dijkstra(G, s){
for each (u in V) { d[u] = infinity }
d[s] = 0 pred[s] = null
Q = priority queue of all vertices u keyed by d[u]
while (Q is not empty) {
u = extractMin from Q
for each (v in Adj[u]) {
if (d[u]l + w(u, v) < d[v]) {
d[v] = d[u] + w(u, v)
decrease v’s key value in Q to d[v]
pred[v] = u //keeps track of the tree
}
}

Time Analysis

» Vertices V\S are stored in a priority queue via
key value d[u]

* Priority queue operations (binary heap)

— build o(n)
— delmin (extract min) = 0(logn)
— decrease key = O(logn)

e T(n,m) =n+n+ Y,y (logn + deg(uw) - logn)
e =2n+lognY ey (1+deg(w))

e =2n+logn(n+2m)

e =2n+nlogn + 2mlogn = O(imlogn)

32

Data Structures and Cost
| linsert| search | delete | findMin | deleteMin | changeKey |
* 1" n

Ordered

Data Structures and Run Times

Dijkstra’s Naive Array Binary d-way Fibonacci
PQ Op Heap Heap [ T
= 1

Insert 1 logn dloggn
ExtractMin m n logn dlogqn logn
ChangeKey - 1 logn dlog,n 1
ISEmpty n 1 1 1 1
Total mn n? mlogn mlogymn  m+nlogn

e m =10 edges connecting n=10°
vertices

« Difference of 6 minutes and 3000 years

‘Array logn 1 1
Ordered n n 1 1 1 n
List
Unordered 4« n 1 n n 1
Array
Unordered 4 n 1 n n n
List
BST logn  logn logn logn logn logn
Binary
Heap logn n logn 1 logn logn
33
Termination
* Loops

—outer while —V is finite
—inner for — G is finite

Correctness

* Need to show that d[v] = §(s,v),Vv €V
* Invariant: d[v] = §(s,v),Vv € S
* Proof by induction on |S]|

—Base case: |S| =1,6(s,5) =0
—Assume true for |S| =k > 1
-|Sl=k+1
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Proof

Let v be the next vertex added to S, along
with (u, v)

dlv] =6(s,u) + w(u,v)

» Consider any other s — v path P. let (x,y)
be the first edge taken by P where x €S

and y € V\S vmi( Iy
d[x] =4(s, x) '
dly] = d[v]

e len(P) > 6(s,x) + w(x y) =d[y] = d[v] =

Cannot provide a shorter
pul)l from s to v

dly) > dv]
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