
2/4/26

1

CS 340 - Analysis of Algorithms
Greedy Algorithms – Dijkstra’s

Dianna Xu

Dijkstra's Algorithm

Definitions

• Given a directed graph ! = ($, &)
• Each edge (,) ∈ & is associated with an
edge weight +((,))

• The length of a path is the sum of weights
along the edges of the path

• The distance between two vertices (and
) is the minimum length of any path
between the vertices, denoted ,((,))

3

Shortest Path Variations

• Single-source, single-sink
• Collection of source-sink pairs
• Single-source to all
• All-pairs

• Typically assume non-sparse graphs, and
connected

4

Single-Source Shortest Path

• Given a directed graph ! = ($, &) with
edge weights and a source vertex (∈ $,
determine the distance * (, + , ∀+ ∈ $

• Negative weights? – Bellman-Ford
• Dijkstra’s – simple greedy algorithm that

assumes nonnegative weights

5

Description

• Maintain an estimate of the shortest path
for each vertex, ![#], from %

• ![#] stores the length of the shortest path
from % to # that the algorithm currently
knows of

• Initially, ! % = 0 and ! # = ∞, # ≠ %
• The algorithm updates ![#] as it
processes more and more vertices -
relaxation

6

2/4/26

2

Relaxation

7

• Consider an edge !, # .
• We have current values for $[!] and $[#]
• $[#] should be the smaller of $! +
)(!, #), or $[#] - do we want to go through
!?

relax(u, v){

if (d[u]+w(u, v)<d[v]) {
d[v] = d[u] + w(u, v)
pred[v] = u

}
}

Dijkstra’s

• A subset of vertices ! ⊆ #, for which we
know the true distance, i.e. $ % = '(), %)

• Initially, ! = {}
• $) = 0, $ % = ∞, % ≠)
• Select vertices from #\S to add to !
(vertices stored in priority queue)

• Each time select the vertex 4 ∈ #\S for
which $[4] is minimum and update the $
values of 4’s neighbors 8

Input

9

10

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4
5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

¥

¥ ¥

¥

¥

¥

¥

0

d[v]

S = { }
V = { s, 2, 3, 4, 5, 6, 7, t }

11

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4
5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

¥

¥ ¥

¥

¥

¥

¥

0

S = { }
V = { s, 2, 3, 4, 5, 6, 7, t }

delmin

12

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4
5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9
¥

¥

¥

14

¥

0

S = { s }
V = { 2, 3, 4, 5, 6, 7, t }

¥X

¥

¥X

X

decrease key

2/4/26

3

13

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4
5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9
¥

¥

¥

14

¥

0

S = { s }
V = { 2, 3, 4, 5, 6, 7, t }

¥X

¥

¥X

X
14

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4
5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9
¥

¥

¥

14

¥

0

S = { s, 2 }
V = { 3, 4, 5, 6, 7, t }

¥X

¥

¥X

X

15

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4
5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9
¥

¥

¥

14

¥

0

S = { s, 2 }
V = { 3, 4, 5, 6, 7, t }

¥X

¥

¥X

X

X 33

16

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4
5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9
¥

¥

¥

14

¥

0

S = { s, 2 }
V = { 3, 4, 5, 6, 7, t }

¥X

¥

¥X

X

X 33

17

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4
5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9
¥

¥

¥

14

¥

0

S = { s, 2, 6 }
V = { 3, 4, 5, 7, t }

¥X

¥

¥X

X

X 33

18

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4
5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9
¥

¥

¥

14

¥

0

S = { s, 2, 6 }
V = { 3, 4, 5, 7, t }

¥X

¥

¥X

X

X 33

44
X

X
32

2/4/26

4

19

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4
5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

¥

¥

14

¥

0

S = { s, 2, 6 }
V = { 3, 4, 5, 7, t }

¥X

¥

¥X

X

44
X

¥X 33X
32

20

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4
5

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

¥

¥

14

¥

0

S = { s, 2, 6, 7 }
V = { 3, 4, 5, t }

¥X

¥

¥X

X

44
X

35X

59 X

24

¥X 33X
32

21

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4
5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

¥

¥

14

¥

0

S = { s, 2, 6, 7 }
V = { 3, 4, 5, t }

¥X

¥

¥X

X

44
X

35X

59 X

¥X 33X
32

22

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4
5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

¥

¥

14

¥

0

S = { s, 2, 3, 6, 7 }
V = { 4, 5, t }

¥X

¥

¥X

X

44
X

35X

59 XX51

X 34

¥X 33X
32

23

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4
5

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

¥

¥

14

¥

0

S = { s, 2, 3, 6, 7 }
V = { 4, 5, t }

¥X

¥

¥X

X

44
X

35X

59 XX51

X 34

¥X 33X
32

24

24

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4
5

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

¥

¥

14

¥

0

S = { s, 2, 3, 5, 6, 7 }
V = { 4, t }

¥X

¥

¥X

X

44
X

35X

59 XX51

X 34

24

X50

X45

¥X 33X
32

2/4/26

5

25

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4
5

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

¥

¥

14

¥

0

S = { s, 2, 3, 5, 6, 7 }
V = { 4, t }

¥X

¥

¥X

X

44
X

35X

59 XX51

X 34

24

X50

X45

¥X 33X
32

26

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4
5

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

¥

¥

14

¥

0

S = { s, 2, 3, 4, 5, 6, 7 }
V = { t }

¥X

¥

¥X

X

44
X

35X

59 XX51

X 34

24

X50

X45

¥X 33X
32

27

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4
5

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

¥

¥

14

¥

0

S = { s, 2, 3, 4, 5, 6, 7 }
V = { t }

¥X

¥

¥X

X

44
X

35X

59 XX51

X 34

X50

X45

¥X 33X
32

24

28

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4
5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

¥

¥

14

¥

0

S = { s, 2, 3, 4, 5, 6, 7, t }
V = { }

¥X

¥

¥X

X

44
X

35X

59 XX51

X 34

X50

X45

¥X 33X
32

29

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4
5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

14

0

S = { s, 2, 3, 4, 5, 6, 7, t }
V = { }

34

50

45

32

Legends

• blue blob: !
• green edges: updates, current pred[v]
• blue edges: SSP tree edges
• red arrows: delmin
• green arrows: decrease key
• green numbers: current d[v]

30

34

2/4/26

6

Dijkstra’s
dijkstra(G, s){

for each (u in V) { d[u] = infinity }
d[s] = 0 pred[s] = null
Q = priority queue of all vertices u keyed by d[u]
while (Q is not empty) {

u = extractMin from Q
for each (v in Adj[u]) {

if (d[u] + w(u, v) < d[v]) {
d[v] = d[u] + w(u, v)
decrease v’s key value in Q to d[v]
pred[v] = u //keeps track of the tree

}
}

}
}

31

Time Analysis
• Vertices !\S are stored in a priority queue via

key value $[&]
• Priority queue operations (binary heap)

– build ((*)
– delmin (extract min) ((,-.*)
– decrease key ((,-.*)

• 0 *,2 = * + * +∑6∈8(log* + deg(&) > log*)
• = 2* + log*∑6∈8 (1+deg(&))
• = 2* + log* (* + 22)
• = 2* + * log* + 22,-.* = ((2 log*)

32

Data Structures and Cost
insert search delete findMin deleteMin changeKey

Ordered
Array ! "#$! 1∗ 1 1∗ !

Ordered
List ! ! 1 1 1 !

Unordered
Array 1∗ ! 1∗ ! ! 1

Unordered
List 1 ! 1 ! ! !

BST "#$! "#$! "#$! "#$! "#$! "#$!
Binary
Heap "#$! ! "#$! 1 "#$! "#$!

33

Data Structures and Run Times
Dijkstra’s

PQ Op
Naïve Array Binary

Heap
d-way
Heap

Fibonacci
Heap

Insert - 1 "#$% &"#$'% 1
ExtractMin (% "#$% &"#$'% "#$%
ChangeKey - 1 "#$% &"#$'% 1

IsEmpty % 1 1 1 1
Total (% %) ("#$% ("#$*/,% (+%"#$%

34

• (= 1012 edges connecting % = 103
vertices

• Difference of 6 minutes and 3000 years

Termination

• Loops
– outer while – ! is finite
– inner for – " is finite

35

Correctness

• Need to show that ! " = $ %, " , ∀" ∈)
• Invariant: ! " = $ %, " , ∀" ∈ *
• Proof by induction on |*|
– Base case: * = 1, $ %, % = 0
– Assume true for * = . > 1
– * = . + 1

36

2/4/26

7

Proof

• Let ! be the next vertex added to ", along
with ($, !)

• (! = * +, $ + -($, !)
• Consider any other + − ! path /. let (0, 1)
be the first edge taken by / where 0 ∈ S
and 1 ∈ 4\S

• (0 = *(+, 0)
• (1 ≥ ([!]
• len / > * +, 0 + - 0, 1 = (1 ≥ ([!] 37

