

CS340 Analysis of Algorithms

Handout: 2	Professor: Dianna Xu
Title: Dijkstra's Shortest Path	E-mail: dxu@cs.brynmawr.edu
Date:	URL: http://cs.brynmawr.edu/cs340

Sample description, pseudo code and proof of correctness for Dijkstra's shortest path algorithm. Please refer to lecture notes for details of the algorithm design and time analysis. Recall that given a directed graph $G=(V,E)$, with associated non-negative edge weights $w(u,v)$ for each edge $(u,v)\in E$, and a source vertex $s\in V$, we want to compute the shortest path from s to all vertices in V .

1 Description

The key idea of Dijkstra's is to maintain an estimate of the shortest path length $d[v]$ for each vertex v from s , stored in an array d indexed by the vertices. The algorithm updates these estimates as it processes more and more vertices, a process known as relaxation. Every iteration, the algorithm will select the unvisited vertex u with the smallest known distance from s , i.e. $d[u]$ is minimum, mark it visited, and update the estimate of all of its neighbors, by comparing the existing estimate $d[v]$ of a neighbor v (note that $d[v]$ currently stores the best known shortest path from s to v without going through u) with the distance of going from s through u to v and update if necessary. A priority queue keyed by each $d[u]$ is used to keep track of which vertex to process next.

2 Pseudocode

```

Function Dijkstra( $G=(V,E),s$ )
  for each  $u\in V$  do
    |  $d[u] = \infty$ 
  end
   $d[s] = 0$ 
   $Q =$  priority queue of all vertices  $u$  keyed by  $d[u]$ 
  while  $Q$  is not empty do
    |  $u =$  extractMin from  $Q$ 
    | for each  $v\in \text{Adj}[u]$  do
    |   | // if going through  $u$  to  $v$  is shorter
    |   | if  $d[u] + w(u, v) < d[v]$  then
    |   |   |  $d[v] = d[u] + w(u, v)$ 
    |   |   | decrease  $v$ 's key value in  $Q$  to  $d[v]$ 
    |   | end
    | end
  end

```

Note that in the implementation above, no visited tags are necessary and we consider all vertices in the priority queue unprocessed/unvisited. As soon as a vertex is removed from the priority queue, it is considered processed/visited.

3 Correctness Proof

Termination is easily argued because the set Q is finite and we delete at least one vertex in each iteration of the `while` loop. The inner `for` loop also terminates because G is finite.

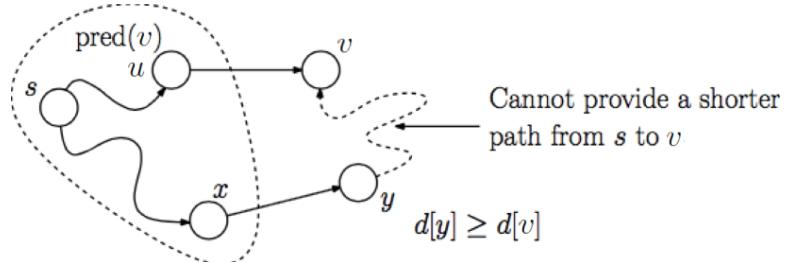
We prove the optimality of Dijkstra by showing that the estimates are computed correctly for all processed (visited) vertices. Let $\delta(s, v)$ denote the length of the true shortest path from s to v .

Lemma: $d[v] = \delta(s, v)$, $\forall v \in S$, where S is the visited/processed set by Dijkstra's

Proof: by induction.

- Base case: $|S|=1$, S consists of only the source vertex s . We set $d[s]$ to 0 and $\delta(s,s)=0$.
- IH: assume that $d[v]=\delta(s,v)$, $\forall v \in S$, where $|S|=k$
- Want to show: lemma holds for $|S|=k+1$, that is, the $d[v]$ of the next vertex added to S is also computed correctly.

Let v be the next vertex added to S , along with edge (u,v) . Note that u must be a vertex already in S , because otherwise the shortest path will be disconnected. We argue that the true shortest path from s to v must be $d[u]+w(u,v)$. Suppose this is not true, and let us consider any other $s \rightarrow v$ path P . Note that no matter which edges P uses, because $v \notin S$, P must have an edge that goes across the cut from S to $V \setminus S$. Let (x,y) be the first edge taken by P where $x \in S$ and $y \in V \setminus S$. Note that it may be that $x=s$ and/or $y=v$, but u and x must be distinct.



By the IH, u and x are both correctly processed and therefore $d[u] = \delta(s, u)$ and $d[x] = \delta(s, x)$. In addition, because relaxations were applied when processing u and x , (recall Dijkstra's relaxes all neighbors when processing a vertex), and we are specifically deciding between adding v to S via the (u, v) edge or y to S via the (x, y) edge, it must be that $d[v]$ was updated to $d[u] + w(u, v)$ when relaxing along (u, v) and $d[y]$ was updated to $d[x] + w(x, y)$ when relaxing along (x, y) . By construction, because Dijkstra's selected v and not y as the next vertex to process, we must have $d[v] \leq d[y]$. Therefore, we have

$$\delta(s, v) \leq d[v] \leq d[y]$$

With a $d[y]$ already not smaller than $d[v]$, and we know that G does not contain any edges with negative weights, there is no way for us to construct a P that connects s to y then to v that can achieve a total length shorter than $d[v]$. Thus we have our contradiction. ■