CS340 Analysis of Algorithms

Handout: 2 Professor: Dianna Xu
Title: Dijkstra’s Shortest Path E-mail: dxu@cs . brynmawr . edu
Date: URL: http://cs.brynmawr.edu/cs340

Sample description, pseudo code and proof of correctness for Dijkstra’s shortest path algorithm. Please
refer to lecture notes for details of the algorithm design and time analysis. Recall that given a directed
graph G=(V,E), with associated non-negative edge weights w(u,v) for each edge (u,v) € E, and a source
vertex s€V, we want to compute the shortest path from s to all vertices in V.

1 Description

The key idea of Dijstra’s is to maintain an estimate of the shortest path length d[v] for each vertex
v from s, stored in an array d indexed by the vertices. The algorithm updates these estimates as it
processes more and more vertices, a process known as relaxation. Every iteration, the algorithm will
select the unvisited vertex u with the smallest known distance from s, i.e. d[u] is minimum, mark it
visited, and update the estimate of all of its neighbors, by comparing the existing estimate d[v] of a
neighbor v (note that d[v] currently stores the best known shortest path from s to v without going
through u) with the distance of going from s through u to v and update if necessary. A priority queue
keyed by each d[u] is used to keep track of which vertex to process next.

2 Pseudocode

Function Dijkstra(G=(V,E),s)
for each u€V do

| dlul = c©
end
dls]= 0

) = priority queue of all vertices u keyed by d[u]
while) is not empty do
u = extractMin from
for each ve Adjl[ul] do
// if going through u to v is shorter
if d[u] + w(u, v) < d[v] then
dlv] = dfu] + w(u, v)
decrease v’s key value in Q to d[v]
end

end

end

Note that in the implementation above, no visited tags are necessary and we consider all vertices in
the priority queue unprocessed/unvisited. As soon as a vertex is removed from the priority queue, it
is considered processed/visited.

http://www.cs.brynmawr.edu/cs340

3 Correctness Proof

Termination is easily argued because the set () is finite and we delete at least one vertex in each iteration
of the while loop. The inner for loop also teriminates because G is finite.

We prove the optimality of Dijstra by showing that the estimates are computed correctly for all
processessed (visited) vertices. Let §(s,v) denote the length of the true shortest path from s to v.
Lemma: d[v]=4(s,v) , YveS, where S is the visited /processed set by Dijkstra’s

Proof: by induction.

e Base case: |S|=1, S consists of only the source vertex s. We set d[s] to 0 and d(s,s)=0.
e TH: assume that d[v]=0(s,v) , Yo €S, where |S|=k

e Want to show: lemma holds for |S|=k+1, that is, the d[v] of the next vertex added to S is also
computed correctly.
Let v be the next vertex added to S, along with edge (u,v). Note that u must be a vertex already
in S, because otherwise the shortest path will be disconnected. We argue that the true shortest
path from s to v must be d[u]+w(u,v). Suppose this is not true, and let us consider any other
s—> v path P. Note that no matter which edges P uses, because v ¢ .S, P must have an edge
that goes across the cut from S to V'\S. Let (x,y) be the first edge taken by P where €S and
yeV\S. Note that it may be that z=s and/or y=v, but v and x must be distinct.

Cannot provide a shorter
path from s to v

e —

dly] > d[v]

By the TH, u and z are both correctly processed and therefore du] =0(s,u) and djx]=0(s,z). In addi-
tion, because relaxations were applied when processing v and z, (recall Dijkstra’s relaxes all neighbors
when processing a vertex), and we are specifically deciding between adding v to S via the (u,v) edge
or y to S via the (x,y) edge, it must be that d[v] was updated to d[u]+w(u,v) when relaxing along
(u,v) and d[y] was updated to d[z]+w(x,y) when relaxing along (x,y). By construction, because Dijk-
stra’s selected v and not y as the next vertex to process, we must have d[v] <d[y|. Therefore, we have

0(sv) <d[v] <dly]

With a d[y] already not smaller than d[v], and we know that G does not contain any edges with
negative weights, there is no way for us to construct a P that connects s to y then to v that can
achieve a total length shorter than d[v]. Thus we have our contradiction. H

	Description
	Pseudocode
	Correctness Proof

